Novel Phl-producing genotypes of finger millet rhizosphere associated pseudomonads and assessment of their functional and genetic diversity

Jegan Sekar \& Vaiyapuri Ramalingam Prabavathy
Microbiology Department, M.S. Swaminathan Research Foundation, Chennai, India

Correspondence: Vaiyapuri Ramalingam
Prabavathy, Microbiology Department, M.S. Swaminathan Research Foundation, $3^{\text {rd }}$ cross Institutional Area, Taramani, Chennai - 600 113, India.
Tel.: +91 9940359628;
fax: +91 44 22541393;
e-mail: prabavathyvr@mssrf.res.in

Received 31 December 2013; revised 3 May 2014; accepted 7 May 2014. Final version published online 6 June 2014

DOI: 10.1111/1574-6941.12354

Editor: Angela Sessitsch

Keywords

2,4-DAPG; HCN; IAA; PGPR; biocontrol; Pseudomonas.

Abstract

Genetic diversity of phlD gene, an essential gene in the biosynthesis of 2,4-diacetylphloroglucinol, was studied by restriction fragment length polymorphism (RFLP) in 20 Phl-producing pseudomonads isolated from finger millet rhizosphere. RFLP analysis of phlD gene displayed three patterns with HaeIII and TaqI enzymes. phlD gene sequence closely correlated with RFLP results and revealed the existence of three new genotypes G, H and I. Further, the phylogenetic and concatenated sequence analysis of the 16 S rRNA, rpoB, gyrB, rpoD genes supported the hypothesis that these genotypes G, H and I were different from reported genotypes A-F. In all phylogenetic studies, the genotype G formed a distant clade from the groups of Pseudomonas putida and P. aeruginosa (sensu strictu), but the groups H and I were closely related to P. aeruginosa/P. stutzeri group. The Phl-producing pseudomonads exhibited antagonistic activity against Pyricularia grisea (TN508), Gaeumannomyces graminis (DSM1463), Fusarium oxysporum (DSM62297), Xanthomonas campestris (DSM3586) and Erwinia persicina (HMGU155). In addition, these strains exhibited various plant growth-promoting traits. In conclusion, this study displays the existence of novel Phl-producing pseudomonads genotypes G, H and I from finger millet rhizosphere, which formed taxonomically outward phylogenetic lineage from the groups of P. putida and P. aeruginosa (sensu strictu).

Introduction

Pseudomonas sp. are dominant plant-associated bacteria in the group of Gammaproteobacteria, which are considered as promising plant growth-promoting rhizobacteria (PGPR). They are common inhabitants of rhizosphere, phyllosphere, can survive a broad range of environmental conditions and also highly influence the soil and plant health (Iavicoli et al., 2003; Naik et al., 2008; Prabavathy et al., 2011).

Pseudomonads provide effective protection against bacterial and fungal pathogens, parasites and certain nematode infections (Chernin \& Chet, 2002; Haas \& Defago, 2005; Yin et al., 2013). The biocontrol potential of pseudomonads is directly correlated with production of several antibiotics (Chin-A-Woeng et al., 2003; Mazurier et al., 2009; Upadhyay \& Srivastava, 2011), among which 2,4-diacetylphloroglucinol (2,4-DAPG) has gained much
attention as it is reported to inhibit a wide spectrum of bacterial and fungal plant pathogens (Immanuel et al., 2012; Mishra \& Arora, 2012; Almario et al., 2013; Yin et al., 2013). 2,4-DAPG is also reported to induce systemic resistance and systemic tolerance in the host plants (Iavicoli et al., 2003). Phl-producing pseudomonads have been recovered worldwide from different rhizospheres (Keel et al., 1996; McSpadden Gardener et al., 2000; Picard et al., 2000; De La Fuente et al., 2006; Velusamy et al., 2006; Immanuel et al., 2012), and their contribution to the suppression of soil-borne plant pathogens has been reported (Sharifi-Tehrani et al., 1998; Haas \& Defago, 2005).

Synthesis of $2,4-\mathrm{DAPG}$ is regulated by phl gene cluster, which consists of six open reading frames phlACBDEFG (Bangera \& Thomashow, 1999). Among the biosynthetic loci, phlD gene is the crucial biosynthetic gene which codes for polyketide synthase, involved in the synthesis of
monoacetylphloroglucinol (precursor for 2,4-DAPG synthesis) from acetoacetyl-CoA (Bangera \& Thomashow, 1999), and is well conserved among all 2,4-DAPG producers worldwide (Picard \& Bosco, 2003; De La Fuente et al., 2006; Velusamy et al., 2006; Frapolli et al., 2007; Paulin et al., 2009; Immanuel et al., 2012).

2,4-DAPG-producing fluorescent pseudomonads have been identified in several distinct groups of pseudomonads (Keel et al., 1996; Sharifi-Tehrani et al., 1998; Berg et al., 2002; Mazzola et al., 2004; Naik et al., 2008). Initially, two major phenotypic groups have been distinguished based on the production of antifungal and antibacterial compounds like 2,4-DAPG, hydrogen cyanide and pyoluteorin (Keel et al., 1996). Sharifi-Tehrani et al. (1998) suggested that promising biocontrol pseudomonads may be identified, based on their ability to produce 2,4-DAPG, or based on amplified ribosomal DNA restriction analysis (ARDRA) fingerprints. McSpadden Gardener et al. (2000) identified 13 and 15 genotypes of Phl-producing pseudomonads by BOX and ERIC-PCR. Picard et al. (2000) differentiated 64 RAPD genotype groups among the fluorescent Phl-producing pseudomonads. Frapolli et al. (2007) used multilocus sequence typing (MLST) approach to group the worldwide collection of Phl-producing pseudomonads. This led to the identification of six genotypes ($\mathrm{A}-\mathrm{F}$) of Phl-producing pseudomonads and proved to be as discriminative as ERIC-PCR and taxonomically correspond to at least six different species. Recently, Phl-producing pseudomonads were assigned to one of these six genotypes (Frapolli et al., 2007; von Felten et al., 2011).

Finger millet [Eleusine coracona (L). Gaertner] is cultivated under diverse agro climatic regions of India. It is affected by more than 20 diseases, among which Pyricularia grisea is a major pathogen. In India, there are very few reports on the occurrence of Phl-producing pseudomonads in various rhizosphere soils and its biocontrol activity (Velusamy et al., 2006; Naik et al., 2008; Immanuel et al., 2012; Asadhi et al., 2013). Only single genotype of Phl-producing pseudomonads is predominant in the rhizosphere (McSpadden Gardener et al., 2000). So, this study was initiated to explore the Phl-producing pseudomonads genotypes in finger millet rhizosphere by (1) screening for Phl-producing pseudomonads associated with the rhizosphere samples of finger millet; (2) evaluating the antagonistic activity of Phl-producing pseudomonads against phytopathogens and assessing its plant growth-promoting traits; (3) analysing the genotypic diversity of the phlD gene through restriction fragment length polymorphism (RFLP) and gene sequencing; (4) identifying the taxonomical position of Phl-producing pseudomonads; (5) delineating Phl-producing pseudomonads genotypes through concatenated sequence analysis.

Materials and methods

Isolation of Pseudomonas from rhizosphere soil samples

Rhizosphere soil samples were collected from finger millet fields of Dharmapuri and Villupuram districts of Tamil Nadu, India, and Pseudomonas were isolated from these samples by placing c. 1 g of soil or roots plus adhering soil into 10 mL of sterilized $1 \% ~(\mathrm{v} / \mathrm{v})$ phosphate-buffered saline (PBS). The samples were vortexed for 15 min , then transferred to 70 mL of sterilized $1 \%(\mathrm{v} / \mathrm{v})$ PBS and incubated on rotary shaker at 150 r.p.m. for 2 h . Samples were serially diluted up to 10^{-6} in $1 \%(\mathrm{v} / \mathrm{v})$ PBS and plated on King's B agar (KBA) medium (King et al., 1954) in triplicates. After incubation at $28{ }^{\circ} \mathrm{C}$ for 48 h , singlecolony representatives of different morphological characteristics were isolated and maintained on KBA medium. All the pure cultures were stored at $-80^{\circ} \mathrm{C}$ in phos-phate-buffered 20% (v/v) glycerol.

Detection of Phl-producing pseudomonads

The chromosomal DNA was extracted from all the isolates by the conventional method as described by Rameshkumar \& Nair (2009). Screening of Phl-producing pseudomonads was performed by targeting phlD gene using specific primer sets as listed in Table 1. DNA of Pseudomonas protegens $\mathrm{CHA} 0^{\mathrm{T}}$ served as positive control, and Vibrio rhizosphaerae DSM 18581^{T} DNA and sterile water served as negative controls. PCRs were carried out in $20 \mu \mathrm{~L}$ reaction mixtures containing $2 \mu \mathrm{~L}$ of 10 X PCR buffer, $2 \mu \mathrm{~L}$ of $2.5 \mathrm{mM} \mathrm{dNTP} \mathrm{mix}, 2 \mu \mathrm{~L}$ of each forward and reverse primer ($25 \mathrm{ng} \mu \mathrm{L}^{-1}$), $0.3 \mu \mathrm{~L}$ of Promega Taq DNA polymerase ($3 \mathrm{U} \mu \mathrm{L}^{-1}$) and $2 \mu \mathrm{~L}$ of template DNA (100-200 ng $\mu \mathrm{L}^{-1}$). The amplification reaction was carried out in an Eppendorf Mastercycler Gradient PCR machine, and the cycling conditions are mentioned in Table 1. After amplification, $3 \mu \mathrm{~L}$ of each PCR products were electrophoresed using $1 \%(\mathrm{w} / \mathrm{v})$ agarose gel containing $0.25 \mu \mathrm{~mL}^{-1}$ ethidium bromide (EtBr), and 1 kb DNA ladder (Biotools, Spain) was used as marker. The gel was run using 0.5 X TBE buffer at a constant 60 V for 1 h , and the PCR products were visualized using a UV transilluminator.

Exploration of functional traits

Screening for honBC genes

Hydrogen cyanide (HCN)-coding pseudomonads were identified by amplifying the $h c n B C$-coding genes using specific primer sets as listed in Table 1. DNA of P. protegens

Table 1. List of primers used in this study and its PCR conditions

Gene	Primer	Sequence ($5^{\prime} \rightarrow 3^{\prime}$)	PCR programme	Size (bp)	Reference
16S rRNA	$\begin{aligned} & \mathrm{fD} 1 \\ & \mathrm{rP2} \end{aligned}$	AGTTTGATCCTGGCTCAG ACGGCTACCTTGTTACGACTT	Initial denaturation at $95{ }^{\circ} \mathrm{C}$ for 5 min was followed by 30 PCR cycles ($944^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 58^{\circ} \mathrm{C}$ for 1 min and $72{ }^{\circ} \mathrm{C}$ for 60 s) and a final extension at $72^{\circ} \mathrm{C}(10 \mathrm{~min})$.	1494	Rameshkumar \& Nair (2009)
ph/D	$\begin{aligned} & \mathrm{Phl} 2 \mathrm{a} \\ & \mathrm{Phl} 2 \mathrm{~b} \end{aligned}$	GAG GACGTCGAAGACCACCA ACCGCAGCATCGTGTATGAG	Initial denaturation at $95{ }^{\circ} \mathrm{C}$ for 5 min was followed by 30 PCR cycles $\left(94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{~s}, 67^{\circ} \mathrm{C}$ for 35 s and $72{ }^{\circ} \mathrm{C}$ for 60 s) and a final extension at $72^{\circ} \mathrm{C}(10 \mathrm{~min})$.	745	Raaijmakers et al. (1997).
$h \subset n A B$	$\begin{aligned} & \text { PM2 } \\ & \text { PM7-26R } \end{aligned}$	TGCGGCATGGGCGTGTGCCATTGCTGCCTGG CCGCTCTTGATCTGCAATTGCAGGCC	Initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min was followed by 30 PCR cycles ($94{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 67^{\circ} \mathrm{C}$ for 35 s and $72{ }^{\circ} \mathrm{C}$ for 60 s) and a final extension at $72^{\circ} \mathrm{C}(10 \mathrm{~min})$.	570	Svercel et al. (2007)
gyrB	M13R M13 (-21)	CAGGAAACAGCTATGACC TGTAAAACGACGGCCAGT	Initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min was followed by 30 PCR cycles $\left(94{ }^{\circ} \mathrm{C}\right.$ for $30 \mathrm{~s}, 58^{\circ} \mathrm{C}$ for 30 s and $72^{\circ} \mathrm{C}$ for 60 s) and a final extension at $72{ }^{\circ} \mathrm{C}(10 \mathrm{~min})$.	1200	Yamamoto et al. (2000)
rpoD	$\begin{aligned} & \text { 70Fs } \\ & \text { 70Rs } \end{aligned}$	ACGACTGACCCGGTACGCATGTA ATAGAAATAACCAGACGTAAGTT	Initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min was followed by 30 PCR cycles ($94{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 58^{\circ} \mathrm{C}$ for 30 s and $72{ }^{\circ} \mathrm{C}$ for 60 s) and a final extension at $72{ }^{\circ} \mathrm{C}(10 \mathrm{~min})$.	800	Yamamoto et al. (2000)
rpoB	rpoBf1 rpoBr1	CAGTTCATGGACCAGAACAACCCGCT CCCATCAACGCACGGTTGGCGTC	Initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min was followed by 30 PCR cycles $\left(94{ }^{\circ} \mathrm{C}\right.$ for $30 \mathrm{~s}, 60^{\circ} \mathrm{C}$ for 30 s and $72{ }^{\circ} \mathrm{C}$ for 60 s) and a final extension at $72^{\circ} \mathrm{C}(10 \mathrm{~min})$.	508	Frapolli et al. (2007)

CHAO ${ }^{\text {T }}$ served as a positive control, and V. rhizosphaerae DSM $18581^{\text {T }}$ DNA and sterile water served as negative controls. PCRs were carried out as described in Table 1. After amplification, the PCR products were electrophoresed using 1% (w/v) agarose gel and visualized under UV transilluminator.

Antagonistic activity of Phl-producing pseudomonads

The antagonistic potential of the Phl-producing pseudomonads against blast pathogen Pyricularia grisea TN508, wilt pathogen Fusarium oxysporum DSM62297 and take all pathogen Gaeumannomyces graminis DSM1463, were determined in KBA and modified oat meal agar (MOMA) medium by dual-plate method. A $6-\mathrm{mm}$ plug of actively growing fungal culture was inoculated in the centre of an agar plate and incubated at room temperature $\left(28 \pm 2{ }^{\circ} \mathrm{C}\right)$ for 48 h . Later, Phl-producing pseudomonads were inoculated 3.5 cm away from the fungal disc on either side of the plate and incubated at $28 \pm 2{ }^{\circ} \mathrm{C}$ for 12-14 days. Activity against bacterial black rot pathogen Xanthomonas campestris DSM3586 and soft rot
pathogen Erwinia persicina HMGU155 was assessed by spread-plate method in KBA medium.

Determination of hydrolytic enzymes associated with biocontrol activity

Phl-producing pseudomonads were tested for the production of lytic enzymes like, chitinase, cellulase and protease. Chitinase production was estimated as described by Kole \& Altosaar (1985) in Dworkin-Foster (DF) salts minimal medium containing 2.5% (w / v) colloidal chitin. Cellulase activity was determined in carboxymethyl cellulose (CMC) agar containing 5\% (w/v) CMC (Sigma Aldrich) (Ariffin et al., 2008). Proteolytic activity was assessed using skimmed milk agar (HiMedia, India) (Wikstrom, 1983).

Evaluation of Phl-producing pseudomonads for PGPR activities

Indole-3-acetic acid (IAA) production by Phl-producing pseudomonads was estimated qualitatively by filter paper overlay method (Bric et al., 1991) in Luria-Bertani (LB)
agar amended with 5 mM L-tryptophan, 0.06% (w / v) sodium dodecyl sulphate and 1% (v/v) glycerol using Salkowski's reagent $\left(150 \mathrm{~mL}\right.$ of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, 250 mL of distilled $\mathrm{H}_{2} \mathrm{O}, 7.5 \mathrm{~mL}$ of $0.5 \mathrm{M} \mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$). The biofilm formation was determined by tissue culture plate (TCP) technique (Christensen et al., 1985), and phosphate solubilization ability of the Phl-producing pseudomonads was assessed in National Botanical Research Institute's (NBRI) phosphate growth medium (Nautiyal, 1999). The ACC deaminase activity was performed as described by Penrose \& Glick (2003) using DF salt minimal medium with P. putida UW4 TSB30 as positive control. The salt tolerance levels were tested using different concentrations of NaCl , viz. $0.5 ; 1.0,1.5$ and 2.0 5 mM in Davis' minimal medium and medium without NaCl served as control (Rangarajan et al., 2002).

Detection of 2,4-DAPG

Overnight grown cultures of Pseudomonas (OD-0.3 at 600 nm) were inoculated in 100 mL KB medium and incubated at $28{ }^{\circ} \mathrm{C}$ at $210 \mathrm{r} . \mathrm{p} . \mathrm{m}$. for 48 h . Extraction of 2,4-DAPG was performed in triplicates by modifying the reported protocol (Bonsall et al., 1997). Five millilitre of culture broth containing the bacterial cells was acidified with 10% (v / v) trifluoroacetic acid (TFA) to pH 2.0 and then extracted twice with 10 mL of ethyl acetate by centrifugation at 3500 g for 6 min (93% extraction efficiency). The ethyl acetate extracts were pooled, evaporated to dryness using a rotary evaporator at $35^{\circ} \mathrm{C}$ and then stored at $-20^{\circ} \mathrm{C}$ until processed. Dried extracts were re-dissolved in 5 mL of $35 \%(\mathrm{v} / \mathrm{v})$ acetonitrile, filtered through $0.45 \mu \mathrm{~m}$ syringe filters and injected into a Prontosil Spheribond ODS2 column $(5 \mu \mathrm{~m}$, $250 \times 4.6 \mathrm{~mm}$, Bischoff Analysentechnik, Germany). The Beckman HPLC system (Beckman Coulter, Germany) consisted of an autosampler 507 e with a $10 \mu \mathrm{~L}$-sample loop: two pumps 114 M , a diode array detector 168 and the chromatographic software gold 7.11. Solvent condition included a flow rate of $0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1}$ with a 2 -min initialization at $10 \%(\mathrm{v} / \mathrm{v})$ acetonitrile $-0.1 \%(\mathrm{v} / \mathrm{v})$ TFA and followed by a $20-\mathrm{min}$ gradient to 100% acetonitrile $0.1 \%(\mathrm{v} / \mathrm{v})$ TFA. HPLC gradient profiles were monitored at 270 nm . Standard was prepared using synthetic 2,4DAPG compound (Chemos, Germany), and four-point standard curves yielded a correlation coefficient of 0.9997.

RFLP analyses of phlD gene fragment

The 745-bp phlD fragment amplified using primers Phl2a and Phl2b was digested with restriction enzymes HaeIII and TaqI (Thermo Scientific, India). In this study, CHA0 ${ }^{\text {T }}$, Pf-5 and Q2.87 were used as comparative
strains to represent the genotypes F and C of Phl-producing pseudomonads. Fifteen microliter of the amplified product was digested in a total volume of $40 \mu \mathrm{~L}$ of 1 X reaction buffer with 12 U of each restriction enzyme as separate digests. Reaction mixtures were incubated at $37^{\circ} \mathrm{C}$ for HaeIII and for TaqI at $60^{\circ} \mathrm{C}$ for $4-6 \mathrm{~h}$. Digested products were analysed by electrophoresis on a $2 \% ~(\mathrm{w} / \mathrm{v})$ agarose containing $0.25 \mu \mathrm{gLL}^{-1} \mathrm{EtBr}$, and 1 kb DNA ladder mix (Thermo Scientific, India) was used as marker. The digested products were visualized under a UV illuminator and documented using a BioRad Gel Doc system.

Phylogenetic analysis of phID gene sequence

Based on the RFLP profile of the phlD gene, isolates were chosen for phlD gene sequence analysis. The amplified $p h l D$ gene fragment was purified using RBC Bioscience HiYield Gel/PCR fragments extraction kit (Taiwan) according to the manufacturer's instructions. The concentration of the eluted product was estimated, and the purified product was sequenced using Phl2a and Phl2b primers by the dideoxy chain termination method with Big Dye Terminator kit (Applied Biosystems). The reaction products were analysed using capillary electrophoresis on an ABI 310 Genetic Analyzer (Applied Biosystems). The identities of the sequenced fragments were determined by blastn and compared with known sequences. Alignment of phlD sequences obtained in this study and those from the databases were performed with Clustalw (Thompson et al., 1994). Distance matrices were computed with Kimura 2-parameter using mega5.2 (Tamura et al., 2011); phylogenetic trees were constructed using the neighbour-joining (NJ) method (Saitou \& Nei, 1987), and the topology was checked by bootstrap analysis (1000 data sets).

Molecular evolutionary analysis of 16S rRNA and housekeeping genes

The genomic DNA of Phl-producing pseudomonads was freshly isolated, and 16 S rRNA and housekeeping genes were amplified and sequenced using primer sets listed in Table 1. PCRs were carried out in $50 \mu \mathrm{~L}$ reaction mixtures containing $5 \mu \mathrm{~L}$ of 10 X PCR buffer, $5 \mu \mathrm{~L}$ of 2.5 mM dNTP mix, $5 \mu \mathrm{~L}$ of each forward and reverse primer ($25 \mathrm{ng} \mu \mathrm{L}^{-1}$), $0.5 \mu \mathrm{~L}$ of Promega Taq DNA polymerase $\left(3 \mathrm{U} \mu \mathrm{L}^{-1}\right)$ and $5 \mu \mathrm{~L}$ of template DNA (100-200 ng $\mu \mathrm{L}^{-1}$). The amplification reaction was carried out in an Eppendorf mastercycler gradient PCR machine under the conditions mentioned in Table 1. The amplified samples were loaded on $1 \%(\mathrm{w} / \mathrm{v})$ agarose gel and resolved at constant voltage of 40 V for 8 h in
0.5X TBE buffer. The products were eluted and purified using RBC Bioscience HiYield Gel/PCR fragments extraction kit (Taiwan) according to the manufacturer's instructions. The concentration of the eluted product was estimated, and the purified product was sequenced through dideoxy chain termination method with Big Dye Terminator kit (Applied Biosystems). The products were analysed using capillary electrophoresis on an ABI 310 Genetic Analyzer (Applied Biosystems). 16S rRNA gene sequences of Phl-producing pseudomonads were compared with the sequences available from GenBank using blastn program and Eztaxon server. 16 S rRNA sequences of closely related members were extracted, and 16 S rRNA sequences obtained in this study were aligned with clustalw (Thompson et al., 1994). Phylogenetic trees were constructed using the NJ, maximumlikelihood (ML), minimum-evolution (ME) and maxi-mum-parsimony (MP) algorithms available in the mega5.2 software (Tamura et al., 2011). The trees were computed using the Kimura 2-parameter method, and topologies of tree were evaluated by bootstrap analysis based on 1000 resamplings.

Concatenated sequence analysis

Sequences of 16 S rRNA, $g y r B, r p o D$ and $r p o B$ were obtained from representative strains of the groups G, H and I Phl-producing pseudomonads, and sequences of other Phl-producing genotypes ($\mathrm{A}-\mathrm{F}$) were obtained from the nucleotide database. All the sequences were separately aligned using clustalw (Thompson et al., 1994) and trimmed separately using mega5.2 (Tamura et al., 2011). sequence matrix (Vaidya et al., 2011) software was used to create concatenate sequences in the order of 16 S rRNA, $g y r B, r p o D$ and $r p o B$ to assemble and analyse the multi-gene data sets. Concatenated sequences were aligned by clustalw (Thompson et al., 1994), and NJ tree was constructed using the Kimura 2-parameter model for estimating pairwise genetic distances using mega5.2 software (Tamura et al., 2011). The degree of statistical support for the nodes on the NJ tree was evaluated by 1000 bootstrap replications.

Results

Isolation and screening of Phl-producing pseudomonads

A total of 500 rhizobacteria with distinct morphological characteristics were isolated from finger millet rhizosphere soil samples, purified and subcultured on KBA medium and stored at $-80^{\circ} \mathrm{C}$ in phosphate-buffered $20 \%(\mathrm{v} / \mathrm{v})$ glycerol. The total population of culturable aerobic
bacteria associated with the rhizosphere soil was found to be at an average of $4.0 \pm 0.2 \log \mathrm{CFU} \mathrm{g} \mathrm{g}^{-1}$. Among the total heterotrophic isolates, only 20 isolates MSSRFD41, MSSRFD68, MSSRFD82, MSSRFD83A, MSSRFD83B, MSSRFD85, MSSRFD86, MSSRFD87, MSSRFD110, MSSRFD114, MSSRFD126, MSSRFD152, MSSRFD254, MSSRFD256, MSSRFD304, MSSRFD398, MSSRFD821, MSSRFD845, MSSRFD846 and MSSRFD865 showed single amplicon of 745 bp fragment size similar to P. protegens $\mathrm{CHAO}^{\mathrm{T}}$ strain. All the 20 isolates were confirmed as Phl-producing pseudomonads based on the existence of phlD gene and phenotypic characteristics, viz. Gram-negative rods, motile, catalase and oxidase positive.

Antagonistic activity of Phl-producing pseudomonads against phytopathogens

Phl-producing pseudomonads exhibited antagonistic activity against fungal pathogens P. grisea, F. oxysporum and G. graminis in KBA and MOMA medium. Seventeen strains exhibited enhanced activity with zone of inhibition against P. grisea ($13-20 \mathrm{~mm}$), F. oxysporum ($7-12 \mathrm{~mm}$) and G. graminis ($8-16 \mathrm{~mm}$) in KBA. Antagonistic activity of Phl-producing pseudomonads in MOMA media showed wide range of activity against P. grisea $(8-15 \mathrm{~mm})$, F. oxysporum $(6-9 \mathrm{~mm})$ and G. graminis ($6-12 \mathrm{~mm}$). Of the 20 Phl -producing pseudomonads, three isolates MSSRFD152, MSSRFD254 and MSSRFD256 failed to inhibit all the three pathogens in both the media. But all the 20 isolates exhibited prominent antibacterial activity in KBA medium against X. campestris DSM3586 and E. persicina HMGU155 with inhibiting zones ranging from 15 to 25 mm and 10 to 23 mm , respectively.

Screening for plant growth-promoting activity and hydrolytic enzymes production

A high degree of functional diversity was observed among the pseudomonads isolated from the finger millet rhizosphere, and the functional properties are represented in Table 2. Among 20 Phl-producing pseudomonads, 14 isolates solubilized phosphate in NBRIP agar medium with clearing zones ranging from 3 to 12 mm in size and 13 isolates produced clearing zones ($2-8 \mathrm{~mm}$) in chitinamended agar medium. Eleven isolates exhibited clear zones around the colony in CMC agar medium and 16 displayed proteolytic activity on skim milk agar medium. Only nine isolates were positive for IAA production; 12 isolates produced biofilm and nine produced ACC deaminase. All the Phl-producing isolates grew in 1.0 M NaCl , but only one isolate MSSRF398 survived in 1.5 M NaCl ,
Table 2. Plant growth-promoting traits of Phl-producing pseudomonads isolated from finger millet rhizosphere soil

S. no	Strain	Phl genotype	Antagonistic activity*					PCR ${ }^{\dagger}$		Hydrolytic enzyme			Plant growth-promoting traits				
			Pg	Fo	$G g$	Xc	Ep	$p h / D^{+}$	HCN^{+}	Cellulase	Protease	Chitinase	Phosphate	Biofilm	ACC	IAA	Salt tolerance
1.	MSSRFD41	G	+++	++	++	+	+	P	P	P	P	P	P	P	P	P	1.0 M
2.	MSSRFD68	G	++	++	++	+	+	P	P	P	P	P	P	P	P	P	1.0 M
3.	MSSRFD82	G	+	+	+	+	+	P	P	N	P	P	P	N	N	N	1.0 M
4.	MSSRFD83A	G	++	+	++	+	$+$	P	P	P	P	P	P	P	P	N	1.0 M
5.	MSSRFD83B	G	++	$+$	++	$+$	$+$	P	P	N	N	N	N	N	P	N	1.0 M
6.	MSSRFD85	G	++	$+$	++	$+$	$+$	P	P	P	N	N	P	P	N	N	1.0 M
7.	MSSRFD86	G	+	+	+	+	+	P	P	N	P	P	P	N	N	N	1.0 M
8.	MSSRFD87	G	+++	++	++	+	+	P	P	P	P	P	P	P	P	P	1.0 M
9.	MSSRFD110	G	++	+	+	+	+	P	P	N	P	P	N	N	N	P	1.0 M
10.	MSSRFD114	G	+	+	+	+	+	P	P	N	P	P	P	N	N	N	1.0 M
11.	MSSRFD126	G	+	+	+	+	+	P	P	P	P	P	N	P	N	P	1.0 M
12.	MSSRFD152	G	-	-	-	$+$	$+$	P	P	N	N	N	P	N	N	N	1.0 M
13.	MSSRFD304	G	++	++	$+$	$+$	+	P	P	P	P	P	P	P	P	N	1.0 M
14.	MSSRFD821B	G	+	+	++	+	+	P	P	N	P	N	N	N	N	P	1.0 M
15.	MSSRFD845	G	++	++	++	+	+	P	P	N	N	N	P	N	N	N	1.0 M
16.	MSSRFD846	G	+++	++	++	+	$+$	P	P	P	P	P	P	P	P	P	1.0 M
17.	MSSRFD865	G	+++	++	++	$+$	$+$	P	P	P	P	P	P	P	P	P	1.0 M
18.	MSSRFD254	H	-	-	-	+	+	P	P	P	P	N	N	P	N	N	1.0 M
19.	MSSRFD256	H	-	-	-	$+$	+	P	P	N	P	N	N	P	N	N	1.0 M
20.	MSSRFD398	1	++	+	++	+	+	P	P	P	P	P	P	P	P	N	1.5 M

The above-mentioned values are obtained from the biological replicates, and ' P ' indicates positive and ' N ' for negative
*Antagonistic activity against Pg, P. grisea; Fo, F. oxysporum; Gg, G. graminis; Xc, X. campestris; Ep, E. persicina, and range of inhibition '+++' indicates $>15 \mathrm{~cm}$, ' ++ ' indicates inhibition zone $<15 \mathrm{~cm}$, '+' indicates inhibition zone $<8 \mathrm{~cm}$, ' - ' indicates no inhibition. ${ }^{\dagger}$ PCR detection of genes encoding the production of DAPG and HCN.

and none of the isolates were able to grow in 2.0 M NaCl .

RFLP analyses of phID gene

The RFLP fingerprinting pattern of the Phl-producing pseudomonads were compared with isolates of F and C genotypes. The amplification of phlD gene using specific primers Phl2a and Phl2b yielded a 745-bp amplicon in all the 20 Phl -producing pseudomonads. Restriction digestion of the amplified product with TaqI and HaeIII gave polymorphic banding patterns which clearly differed in size compared to the fragments of genotypes F and C. Based on these polymorphisms, the isolated Phl-producing pseudomonads were assigned to new genotypes G, H and I (Fig 1 a and b) in continuation to the already reported genotypes of A-F (Frapolli et al., 2007). Among the three genotypes, G was the largest group with 17 pseudomonads, followed by H with 2 and I having 1 Phl-producers.

Sequence analysis and phylogenetic divergent of phID gene

Totally 13 representative Phl-producing pseudomonads from each genotype based on functional traits were
chosen for the phlD gene sequencing. The phlD gene sequences obtained were in an average read length of 690 bp , and sequences showed maximum similarity of $<87-89 \%$ with deposited sequences of phlD gene which codes for known protein polyketide synthases, especially with P. fluorescens phlD gene. Phylogenetic analysis of phlD gene showed a divergent relationship among the isolates from this study, as well as with the existing phlD genotypes. The evolutionary analyses revealed clear discrimination between the genotypes from this study (G-I) and existing (A-F) Phl-producers. phlD gene sequences from this study were found to cluster in a monophyletic clade associated with high bootstrap support values (Fig. 2) which clearly indicated the existence of new genotypes among Phl-producing pseudomonads.

Phylogenetic analysis of Phl-producing pseudomonads

The taxonomical position of 20 Phl -producing pseudomonads was determined based on partial 16 S rRNA gene (c. 1400 bp) sequencing, and the results were compared with the type strains 16 S rRNA sequences and other sequences in the databases. Similarity index analysis indicated that 17 isolates (genotype - G) showed 98-99\%

Fig. 2. Phylogenetic tree based on the comparison of phID gene sequence from this study with the reported A-F genotype sequences retrieved from the NCBI database inferred using the NJ method. Numbers at the nodes are percentage bootstrap values based on 1000 resampled data sets with only bootstrap values $\geq 50 \%$ shown.

similarity to P. putida group strains (sensu strictu) like P. taiwanensis BCRC 17751^{T}, P. plecoglossicida FPC 951^{T}, P. mosselii CIP 105259^{T} and P. monteilii CIP 104883^{T}. The other two genotypes of Phl-producing pseudomonads belonged to the group of P. aeruginosa (sensu strictu). Genotype H showed maximum similarity index of 99.2% to P. alcaligenes LMG 1224^{T}, and 98% to P. aeruginosa LMG 1242^{T} and P. resinovorans LMG 2274^{T}. Genotype I showed 98.9% similarity index to P. mendocina LMG 1223^{T} and P. oleovorans DSM 1045^{T}. The evolutionary distance for 20 Phl -producing pseudomonads and related type strains was computed using the Kimura 2-parameter method and was in the units of the number of base substitutions per site. Their evolution was inferred using the NJ method (Fig. 3) and grouped based on Anzai et al. (2000). Even though 17 (genotype G) isolates displayed similarity index of $98-99 \%$ to existing type strains in P. putida group (sensu strictu), the result of phylogenetic
analysis revealed a separate clade from P. putida group (sensu strictu). Based on bootstrap analysis of 1000 resampled data sets, only values above 55% are shown. The constructed ML, ME and MP trees strongly supported the topological position of these Phl-producing pseudomonads (data not shown). Two isolates MSSRFD254 and MSSRFD256 (genotype H) also formed an outward phylogenetic relationship with P. alcaligenes LMG 1224^{T} and MSSRFD398 (genotype I) clade with the P. mendocina LMG 1223^{T}. Phylogenetic analysis showed that the isolates in genotype G and I formed an outward clade from its closest type strains. Among the 17 isolates of genotype G, the existence of intrageneric diversity was clearly represented in the phylogenetic tree (Fig. 3). Similarly, 16S rRNA phylogenetic tree constructed with genotypes of Phl-producing pseudomonads, and closest strains clearly differentiated the new genotype G, H and I (Supporting Information, Fig. S1).

Fig. 3. Phylogenetic relationship of the Phlproducing pseudomonads to related type strains of Pseudomonas species based on 16S rRNA gene sequences. The tree was constructed by the NJ method and computed using the Kimura 2-parameter method. Bootstrap percentages above 50 are given at branching points. The optimal tree with the sum of branch length $=0.38498299$ is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches and only bootstrap values $\geq 50 \%$ shown. Escherichia coli KCTC 2441^{\top} was used as an out-group.

Molecular evolutionary analysis of gyrB, rpoD and rpoB genes

Three isolates from genotype G (MSSRFD41, MSSRFD304 and MSSRFD865), two from genotype H (MSSRFD254 and MSSRFD256) and one from genotype I (MSSRFD398), were chosen for sequence analysis of their housekeeping genes $g y r B, r p o D$ and $r p o B$. Genotype G $g y r B$ and $r p o B$ gene sequence analyses showed highest similarity with P. protegens Pf-5 (95\%, 94\%) and P. protegens $\mathrm{CHAO}^{\mathrm{T}}(94 \%, 93 \%)$; similarity level of $r p o D$ was 90% to P. protegens Pf-5 and P. protegens CHA0 ${ }^{\text {T }}$, and the similarity index of these isolates to other Pseudomonas spp. was $<90-92 \%$. Sequence analyses of Genotype H showed $r p o B(94 \%)$, $g y r B(90 \%)$ and $r p o D(88 \%)$ similarity to P. mendocina LMG 1223^{T}, P. otitidis DSM 17224^{T} and P. alcaligenes LMG 1224^{T}. The genotype I exhibited
98% similarity to P. mendocina LMG $1223^{\text {T }}$ for all the three genes. Based on the similarity level and the phylogenetic tree analysis, genotype G displayed separate topological position from other Pseudomonas spp. for housekeeping genes $g y r B$ (Fig. S2), rpoD (Fig. S3) and $r p o B$ (Fig. S4). The sequence analyses of housekeeping genes and 16 S rRNA gene revealed similar taxonomical clarifications of all the three genotypes of Phl-producing pseudomonads. The phylogenetic analysis of all the three housekeeping genes of the genotype G and I formed an outward clade which supported the results of 16 S rRNA analysis.

Concatenated sequence analysis

Partial sequences of 16 S rRNA, $\operatorname{gyr} B, r p o D$ and $r p o B$ genes from genotypes G, H and I; 57 Phl-producing
pseudomonads genotypes A-F and 14 neighbouring pseudomonads were used for the concatenation. The alignment and trimming of the sequences individually yielded concatenated of 2969 nucleotides (16S rRNA-1376; gyrB533; rpoD-608 and rpoB-452 bp). Results of concatenated sequence analysis strongly indicated that these three genotypes G, H and I from this study could be a new genotype among the reported Phl-producing pseudomonads genotype (A-F). The phylogenetic tree based on the concatenated sequences confirmed the clustering of the genotypes G, H and I isolates with high bootstrap value and formed a separate clade from the currently known genotypes (A-F) of Phl-producing pseudomonads (Fig. 4).

Quantification of DAPG production

2,4-DAPG production by all the 20 Phl -producing pseudomonads was quantified by HPLC analysis and compared to the standard. 2,4-DAPG eluted at a retention time of 16.6 min . Average amount of $2,4-\mathrm{DAPG}$ production in genotype G (16 isolates) was in the range of $35-$ $40 \pm 1 \mu \mathrm{~mL}^{-1}$, and one isolate (MSSRF152) produced $6 \pm 0.9 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$. Genotype H-(2 isolates) produced $7 \pm 0.7 \mu \mathrm{~g} \mathrm{~mL}$-1 of 2,4-DAPG and genotype I-(1 isolate) produced $13 \pm 0.9 \mu \mathrm{~mL}^{-1}$.

Overall, RFLP, phylogenetic and concatenated sequence analysis clearly differentiated the genotypes G, H and I which differed from earlier reported Phl-producing pseudomonads genotypes $\mathrm{A}-\mathrm{F}$. In particular, genotype G showed the most distinct clade when compared to other species of pseudomonads. These analyses visibly indicated the existence of novel and distinct species among the pseudomonads population. This study suggests that finger millet rhizosphere harbours significant populations of Phl-producing pseudomonads which can protect the plant from phytopathogenic infections and enhance plant growth.

Discussion

The primary objective of this research was to explore the genetic and functional diversity of Phl-producing pseudomonads community from the finger millet rhizosphere. In many studies, phlD gene was used as a marker for the isolation of Phl-producing pseudomonads (McSpadden Gardener et al., 2000, 2005; Mavrodi et al., 2001; Picard \& Bosco, 2003; De La Fuente et al., 2006; von Felten et al., 2011; Immanuel et al., 2012). The present study also proved that the phlD gene is highly conserved among pseudomonads and could be used as a reliable marker to identify Phl-producing pseudomonads. Isolation of Phlproducing pseudomonads from different plant rhizospheres has been reported all over the world (Keel et al.,

1996; McSpadden Gardener et al., 2000; De La Fuente et al., 2006; Velusamy et al., 2006; Immanuel et al., 2012). In this study, the diversity and taxonomic position of the Phl-producing pseudomonads were analysed from finger millet rhizosphere soil samples of Tamil Nadu, India. The results indicated that new genotypes of Pseudomonas spp. recovered from the finger millet rhizosphere soil samples harboured phlD-coding gene and possessed potential PGPR traits such as production of hydrolytic enzymes, phosphate solubilization, ACC deaminase production, biofilm formation as reported earlier (Chernin \& Chet, 2002; Haas \& Defago, 2005; Naik et al., 2008). But in this study, phosphate solubilization was observed in the groups of P. putida and P. aeruginosa (sensu strictu), and these results contradict to the findings of Browne et al. (2009) who demonstrated that Pseudomonas strains with the ability to solubilize phosphate were linked to a single phylogenetic lineage within the P.fluorescens group.

Some of the Phl-producing pseudomonads failed to inhibit the phytopathogens under in vitro conditions, it may be due to the impact of factors like medium, concentration of metabolite produced and expression of antibiotic coding genes. Similarly, Keel et al. (1992) and McSpadden Gardener et al. (2005) reported that the production of 2,4 -DAPG was media dependent and required suitable environments to inhibit phytopathogens. Paulin et al. (2009) showed the expression of phlD gene and the production of 2,4 -DAPG significantly changed over time, which was also influenced by the presence of the pathogen, growth medium and was a time-dependent response. These results are clearly in line with the earlier findings, indicating that the expression of the functional genes or production of DAPG purely depends on the nutrient conditions. Hence, it is essential to understand the diversity of phlD gene and the existence of predominant Phl-producing Pseudomonas genotypes in the rhizosphere (McSpadden Gardener et al., 2005) to evaluate the potential or frequency of horizontal transfer of the biosynthetic genes between members of the rhizosphere microbial community and their role in biocontrol.
In many studies, diversity of phlD gene has been explored through different markers like RFLP (Mavrodi et al., 2001; Picard \& Bosco, 2003), BOX and ERIC-PCR (McSpadden Gardener et al., 2000), ARDRA (Keel et al., 1996; Sharifi-Tehrani et al., 1998; McSpadden Gardener et al., 2000) and RAPD (Picard et al., 2000). Mavrodi et al. (2001) clearly showed the diversity of phlD gene by RFLP analysis that correlated closely with clusters defined previously by BOX PCR genomic fingerprinting, indicating the usefulness of phlD as a marker of genetic diversity and population structure among 2,4 -DAPG producers. Among these, RFLP analysis of the phlD gene using

Fig. 4. NJ phylogenetic tree based on concatenated sequences 2969 bp of the 165 rRNA (1376), gyrB (533), rpoD (608) and rpoB (452), showing the position of the outward group as well as clear discrimination of Phlproducing pseudomonads. The stability of the grouping was estimated by bootstrap percentages from 1000 replicates, and only bootstrap values $\geq 50 \%$ were shown. Similar tree topology was obtained with the ML algorithm. Numbers at the nodes show the percentage bootstrap values and the optimal tree with the sum of branch length $=0.74772799$.

HaeIII has been widely used for analysing the ecology and population genetics of this beneficial group of soil bacteria at different levels (Mavrodi et al., 2001; Picard \& Bosco, 2003; McSpadden Gardener et al., 2005). In our study, digestion of phlD gene with HaeIII enzyme showed high polymorphism among the Phl-producers when compared to digestion with TaqI which was in concurrence with the findings of Mavrodi et al. (2001). This clearly shows that enzyme HaeIII can be used to study the population structure of Phl-producing genotypes from different groups of pseudomonads. DGGE and quantitative PCR were used to assess phlD gene diversity and biocontrol efficiency of Phl-producing pseudomonads (BergsmaVlami et al., 2005; Frapolli et al., 2010; von Felten et al., 2011; Almario et al., 2013; Asadhi et al., 2013).

Frapolli et al. (2007) systematically analysed the six reference genotypes (A-F) of Phl-producing pseudomonads and recommended MLST approach to study the genetic and evolutionary relations among Phl-producing pseudomonads. In our studies, concatenated sequence approach clearly resolved the phylogeny and population structure of the six reference genotypes (A-F) and three new genotypes (G, H and I). Concatenated sequence of the 16 S rRNA and the housekeeping genes showed a clear taxonomical position of genotype G which formed a distinct clade from P. putida (sensu strictu) and genotype H formed an outward lineage with P. alcaligenes LMG 1224^{T}. Currently, concatenated sequences of multiple gene approaches have been reported as a rapid and robust classification method for the microbial molecular
systematics (Gevers et al., 2005) and to demonstrate variable levels of genetic diversity and recombination (Curran et al., 2004). 16S rRNA sequence analysis showed that Phl-producing genotypes A-E belong to the P. fluorescens complex (Frapolli et al., 2007). But, group F was defined as a separate group of Phl-producing pseudomonads (ARDRA 1 group) by Keel et al. (1996) and does not belong to the P. fluorescens complex as shown by Frapolli et al. (2007).
Earlier studies have reported the presence of phlD gene more frequently among P. fluorescens (Kole \& Altosaar, 1985; Bangera \& Thomashow, 1999), P. aeruginosa (Naik et al., 2008) and P. putida (Berg et al., 2002; Mazzola et al., 2004), but not among the closest strains of P. alcaligenes and P. mendocina. Probably, genotypes G and H can be novel species, as they indicate new genotypes among Phl-producing pseudomonads and formed a distinct taxonomical clade from P. putida and P. aeruginosa (sensu strictu) groups. Recently, Lopez et al. (2012) reported a novel species of P. baetica LMG $25716^{\text {T }}$ within the group of P. fluorescens with high similarity of $99.4-99.3 \%$ with type strains. Although in this study, the genotypes of G and H exhibited high similarity index of $98.0-99.2 \%$ to closely related type strains, they formed an outward clade in all phylogenetic analysis and functionally these genotypes exhibited unique properties.

Through our analysis, all the methods visibly proved a high degree of discrimination among the phlD gene population structure. This is in agreement with McSpadden Gardener et al. (2000) who stated that in spite of multiple genotypes being isolated, only one genotype was predominant in the rhizosphere. In the present study, also a single genotype of Phl-producing pseudomonads was found to be predominant in the finger millet rhizosphere soil. So, phlD gene can be used as a marker gene to study the genetic diversity and the population structure of Phl-producing pseudomonads from rhizosphere soils of different geographical origins. Initially, Keel et al. (1996) showed two groups of antibiotic-producing pseudomonads through ARDRA analysis; subsequently, these two groups were delineated, substantial diversity was found and the number has increased as a result of differences in genotypic and phenotypic traits (Frapolli et al., 2007). Fluorescent pseudomonads (Keel et al., 1992; Picard \& Bosco, 2003; Mazurier et al., 2009) are dominant DAPG-producing groups and have been reported to act as potential biocontrol agents mainly against fungal pathogens (Kole \& Altosaar, 1985; Haas \& Defago, 2005). Interestingly, in this study, Phl-producing pseudomonads were observed in groups of P. putida and P. aeruginosa (sensu strictu) and not in P. fluorescens. The existence of phlD gene in these groups may have occurred due to
horizontal gene transfer or evolutionary changes in the phlD biosynthetic plant chalcone synthase genes, which belongs to type III polyketide synthase gene and is known to be unusual in prokaryotes (Bangera \& Thomashow, 1999). So, there is the possibility of a common evolutionary origin, probably as a result of horizontal gene transfer from plants to the bacteria (Cook et al., 1995). This hypothesis is on par with the fact that bacterial transformation could take place inside the plant tissues (Bertolla et al., 1999). The evolutionary relationship of phlD gene among these Phl-producing pseudomonads needs to be studied to further understand the evolution of this gene.

The diversity of phlD gene has been studied from different rhizospheres, viz. wheat (McSpadden Gardener et al., 2000), rice (Immanuel et al., 2012) and maize (Picard \& Bosco, 2003). This is the first study to systematically investigate the distribution of Phl-producing pseudomonads associated with the finger millet rhizosphere soils and has proved the existence of predominant Phl-producing pseudomonad genotype. Based on the results of RFLP, concatenated sequences and phlD gene sequence analysis, it is proposed that the genotypes G, H and I could be considered as new genotypes and the isolates of genotypes G and H may belong to new phylogenetic group as it forms an outward clade in all the sequence analyses. The knowledge of the phlD gene diversity sets a baseline to investigate the relationships between Phl-producing pseudomonads and their impact on the biocontrol of phytopathogens and plant growth.

Acknowledgements

This work was carried out with financial support from the Department of Biotechnology, Government of India. We are grateful to Prof. Dr Linda S. Thomashow and Dr Monika Maurhofer for providing P. protegens $\mathrm{CHA} 0^{\mathrm{T}}$ and P. fluorescens Q2-87. We also thank Dr N. Ramesh Kumar, National Institute for Interdisciplinary Science and Technology (NIIST), for his suggestions in phylogenetic tree construction and Dr Alavandi and N. Dinesh Kumar, Central Institute of Brackish Aquaculture (CIBA), Chennai, for their support.

Statement

The GenBank accession numbers for 16S rRNA HQ454991, HQ454997, HQ454998, HQ454999, HQ455000, HQ455002, HQ455005, HQ455006, HQ455010, HQ455011, HQ455012, HQ455013 and JQ970519; phlD JF780953 to JF780964 and KF015991, gyrB KF111013-KF111017, rpoB KF111008-KF 111012 and $r p o D$ KF015986- KF015990.

References

Almario J, Moënne-Loccoz Y \& Muller D (2013) Monitoring of the relation between 2,4-diacetylphloroglucinol-producing Pseudomonas and Thielaviopsis basicola populations by real-time PCR in tobacco black root-rot suppressive and conducive soils. Soil Biol Biochem 57: 144-155.
Anzai Y, Kim H, Park JY, Wakabayashi H \& Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16 S rRNA sequence. Int J Syst Evol Microbiol 50: 1563-1589.
Ariffin H, Hassan MA, Shah UK, Abdullah N, Ghazali FM \& Shirai Y (2008) Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J Biosci Bioeng 106: 231-236.
Asadhi S, Bhaskara Reddy BV, Sivaprasad Y, Prathyusha M, Murali Krishna T, Vijay Krishna Kumar K \& Raja Reddy K (2013) Characterisation, genetic diversity and antagonistic potential of 2,4-diacetylphloroglucinol producing Pseudomonas fluorescens isolates in groundnut-based cropping systems of Andhra Pradesh, India. Arch Phytopathol Pflanzenschutz 46: 1966-1977.
Bangera MG \& Thomashow LS (1999) Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 181: 3155-3163.
Berg G, Roskot N, Steidle A, Eberl L, Zock A \& Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68: 33283338.

Bergsma-Vlami M, Prins ME, Staats M \& Raaijmakers JM (2005) Assessment of genotypic diversity of antibiotic-producing Pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis. Appl Environ Microbiol 71: 993-1003.
Bertolla F, Frostesard A, Brito B, Nesme X \& Simonet P (1999) During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Mol Plant Microbe Interact 12: 467-472.
Bonsall RF, Weller DM \& Thomashow LS (1997) Quantification of 2,4-Diacetylphloroglucinol produced by fluorescent Pseudomonas spp. In vitro and in the rhizosphere of wheat. Appl Environ Microbiol 63: 951-955.
Bric JM, Bostock RM \& Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57: 535-538.
Browne P, Rice O, Miller SH, Burke J, Dowling DN, Morrissey JP \& O’Gara F (2009) Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Appl Soil Ecol 43: 131138.

Chernin L \& Chet I (2002) Microbial Enzymes in Biocontrol of Plant Pathogens and Pests. CRC Press,Boca Raton, FL.

Chin-A-Woeng TF, Bloemberg GV \& Lugtenberg BJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157: 503-523.
Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM \& Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22: 9961006.

Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G \& Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root disease. P Natl Acad Sci USA 92: 4197-4201.
Curran B, Jonas D, Grundmann H, Pitt T \& Dowson CG (2004) Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 42: 5644-5649.
De La Fuente L, Mavrodi DV, Landa BB, Thomashow LS \& Weller DM (2006) phlD-based genetic diversity and detection of genotypes of
2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. FEMS Microbiol Ecol 56: 64-78.
Frapolli M, Defago G \& Moenne-Loccoz Y (2007) Multilocus sequence analysis of biocontrol fluorescent Pseudomonas spp. producing the antifungal compound
2,4-diacetylphloroglucinol. Environ Microbiol 9: 1939-1955.
Frapolli M, Défago G \& Moënne-Loccoz Y (2010) Denaturing gradient gel electrophoretic analysis of dominant 2,4-diacetylphloroglucinol biosynthetic phlD alleles in fluorescent Pseudomonas from soils suppressive or conducive to black root rot of tobacco. Soil Biol Biochem 42: 649-656.
Gevers D, Cohan FM, Lawrence JG et al. (2005) Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol 3: 733739.

Haas D \& Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3: 307-319.
Iavicoli A, Boutet E, Buchala A \& Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16: 851-858.
Immanuel JE, Hemamalini R \& Gnanamanickam SS (2012) Genetic diversity of biocontrol strains of Pseudomonas fluorescens producing 2, 4-diacetylphloroglucinol from southern India. J Crop Improv 26: 228-243.
Keel C, Schnider U, Maurhofer M et al. (1992) Suppression of root disease by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2 , 4-diacetylphloroglucinol. Mol Plant Microbe Interact 5: 4-13.
Keel C, Weller DM, Natsch A, Defago G, Cook RJ \& Thomashow LS (1996) Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol 62: 552-563.

King EO, Ward MK \& Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44: 301-307.
Kole MM \& Altosaar I (1985) Increased chitinase production by a non-pigmented mutant of Serratia marcescens. FEMS Microbiol Lett 26: 265-269.
Lopez JR, Dieguez AL, Doce A et al. (2012) Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). Int J Syst Evol Microbiol 62: 874-882.
Mavrodi OV, McSpadden Gardener BB, Mavrodi DV, Bonsall RF, Weller DM \& Thomashow LS (2001) Genetic diversity of phlD from 2,4-Diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology 91: 35-43.
Mazurier S, Corberand T, Lemanceau P \& Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3: 977-991.
Mazzola M, Funnell DL \& Raaijmakers JM (2004) Wheat cultivar-specific selection of
2,4-diacetylphloroglucinol-producing fluorescent
Pseudomonas species from resident soil populations. Microb Ecol 48: 338-348.
McSpadden Gardener BB, Schroeder KL, Kalloger SE, Raaijmakers JM, Thomashow LS \& Weller DM (2000) Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl Environ Microbiol 66: 1939-1946.
McSpadden Gardener BB, Gutierrez LJ, Joshi R, Edema R \& Lutton E (2005) Distribution and biocontrol potential of $p h l D^{+}$pseudomonads in corn and soybean fields. Phytopathology 95: 715-724.
Mishra S \& Arora NK (2012) Management of black rot in cabbage by rhizospheric Pseudomonas species and analysis of 2,4-diacetylphloroglucinol by qRT-PCR. Biol Control 61: 3239.

Naik PR, Sahoo N, Goswami D, Ayyadurai N \& Sakthivel N (2008) Genetic and functional diversity among fluorescent pseudomonads isolated from the rhizosphere of banana. Microb Ecol 56: 492-504.
Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170: 265-270.
Paulin MM, Novinscak A, St-Arnaud M et al. (2009) Transcriptional activity of antifungal metabolite-encoding genes phlD and henBC in Pseudomonas spp. using qRT-PCR. FEMS Microbiol Ecol 68: 212-222.
Penrose DM \& Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118: 10-15.
Picard C \& Bosco M (2003) Genetic diversity of phlD gene from 2,4-diacetylphloroglucinol-producing Pseudomonas spp. strains from the maize rhizosphere. FEMS Microbiol Lett 219: 167-172.
Picard C, Di Cello F, Ventura M, Fani R \& Guckert A (2000) Frequency and biodiversity of

2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66: 948-955.
Prabavathy VR, Jegan S, Jeyaraman A \& Nair S (2011) Genetic diversity of PGPR Pseudomonas associated with rhizosphere of different crops cultivated in the saline agri-ecosystem. Plant Growth-Promoting Rhizobacteria (PGPR) for Sustainable Agriculture, (Reddy MS \& Wang Q, eds), pp. 112-118. Asian PGPR Society, Beijing, China.
Raaijmakers JM, Weller DM \& Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63: 881-887.
Rameshkumar N \& Nair S (2009) Isolation and molecular characterization of genetically diverse antagonistic, diazotrophic red-pigmented vibrios from different mangrove rhizospheres. FEMS Microbiol Ecol 67: 455-467.
Rangarajan S, Saleena LM \& Nair S (2002) Diversity of Pseudomonas spp. isolated from rice rhizosphere populations grown along a salinity gradient. Microb Ecol 43: 280-289.
Saitou N \& Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.
Sharifi-Tehrani A, Zala M, Natsch A, Moënne-Loccoz Y \& Défago G (1998) Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16 S rDNA. Eur J Plant Pathol 104: 631-643.
Svercel M, Duffy B \& Defago G (2007) PCR amplification of hydrogen cyanide biosynthetic locus hcnAB in Pseudomonas spp. J Microbiol Methods 70: 209-213.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M \& Kumar S (2011) mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731-2739.
Thompson JD, Higgins DG \& Gibson TJ (1994) clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680.
Upadhyay A \& Srivastava S (2011) Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Microbiol Res 166: 323-335.
Vaidya G, Lohman DJ \& Meier R (2011) sequencematrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27: 171-180.
Velusamy P, Immanuel JE, Gnanamanickam SS \& Thomashow L (2006) Biological control of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Can J Microbiol 52: 56-65.
von Felten A, Meyer JB, Defago G \& Maurhofer M (2011) Novel T-RFLP method to investigate six main groups of 2,4-diacetylphloroglucinol-producing pseudomonads in environmental samples. J Microbiol Methods 84: 379-387.

Wikstrom MB (1983) Detection of microbial proteolytic activity by a cultivation plate assay in which different proteins adsorbed to a hydrophobic surface are used as substrates. Appl Environ Microbiol 45: 393-400.
Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A \& Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146: 23852394.

Yin D, Wang N, Xia F, Li Q \& Wang W (2013) Impact of biocontrol agents Pseudomonas fluorescens 2P24 and CPF10 on the bacterial community in the cucumber rhizosphere. Eur J Soil Biol 59: 36-42.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Fig. S1. Neighbor-joining phylogenetic tree inferred from 16 S rRNA sequences of Phl-producing pseudomonads groups and representative of closest phl-producing pseudomonads species.
Fig. S2. Neighbor-joining tree of Phl-producing pseudomonads group A-I and type strains of Pseudomonas species inferred from gyrB DNA sequences.
Fig. S3. The evolutionary history of rpoD DNA sequences among the groups of Phl-producing pseudomonads and type strains of Pseudomonas species was inferred using the Neighbor-Joining method.
Fig. S4. Neighbor-joining tree of Phl-producing pseudomonads group A-I and type strains of Pseudomonas species inferred from rpoB DNA sequences.

