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Abstract

Rhizosphere microorganisms directly and indirectly influence the composition
and productivity of natural plant communities. Hence, belowground microbial
species richness has been proposed as a predictor of aboveground plant diversity
and productivity. Though research-based evidences clearly show the advantages
of microbial consortia-based products due to their multifunctionality, limited
attention is being given to develop quality standards for registration. This chapter
focuses on the uses, commercialization, and regulatory issues of various bacte-
rial consortia in sustainable agriculture.
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7.1 Introduction

Microbes are the most diverse communities on Earth that play a pivotal role in
Earth’s climatic, geological, geochemical, and biological process (Tringe et al.
2005; Xu 2006). The diverse genetic and functional groups of the soil microbial
population exert a critical impact on soil function (Barea et al. 2005; Avis et al.
2008), particularly in the root—soil microhabitat referred to as rhizosphere which is
considered as the hot spot for interaction between eukaryotes and prokaryotes
(Jones and Hinsinger 2008; Hinsinger et al. 2009; Raaijmakers et al. 2009).
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Microbial interaction in the soil can be managed with low biotechnological
inputs, to help sustainable and environment-friendly agro-technological practice
(Azcon and Barea 2010; Ramos-Solano et al. 2010). The rhizosphere offers a com-
plex microhabitat where root exudates provide a diverse mixture of organic com-
pounds that are used as nutrients or signals by the soil microbial population
(Brimecombe et al. 2007; Jones et al. 2009; Dennis et al. 2010; Bulgarelli et al.
2013) which results in a high degree of interaction between microbes, plant, and
soil. Thus, understanding the function of microbial communities in the rhizosphere
is of current research interest and has been extensively reviewed by many authors
(Jones and Hinsinger 2008; Berg and Smalla 2009; Cavaglieri et al. 2009; Keswani
et al. 2013; Unno and Shinano 2013; Vacheron et al. 2013; Chaparro et al. 2014;
Gupta et al. 2015; Schlaeppi and Bulgarelli 2015; Bisen et al. 2015).

Rhizosphere microorganisms directly and indirectly influence the composition
and productivity (i.e., biomass) of natural plant communities (Van der Heijden et al.
1998, 2008; Schnitzer et al. 2011). Hence, belowground microbial species richness
has been proposed as a predictor of aboveground plant diversity and productivity
(De Deyn et al. 2004; Hooper et al. 2005; van der Heijden et al. 2008; Lau and
Lennon 2011). Wagg et al. (2011) further suggested that belowground diversity may
act as an insurance for maintaining plant productivity under different environmental
conditions.

Microbial groups residing in the rhizosphere include bacteria, fungi, archaea,
algae, nematodes, protozoa, viruses, oomycetes, and microarthropods (Lynch 1990;
Buée et al. 2009; Mendes et al. 2013). The bacterial groups like Pseudomonas,
Azospirillum, Methylobacterium, Enterobacter, Serratia, Arthrobacter, Azotobacter,
Bacillus, etc. lead the microbial population in the rhizosphere soil, followed by
fungi, actinomycetes, and other groups (Gray and Smith 2005; Mendes et al. 2013;
Nunes da Rocha et al. 2013). The overall interaction of the rhizomicrobiome and its
function and impact on plant is represented in Fig. 7.1.

7.2 Plant-Microbe Interactions

Plant—microbe interactions in the rhizosphere depend on the function of the associ-
ated microorganisms based on which the microbes are classified as beneficial, del-
eterious, and neutral groups, and the bacteria that belong to the beneficial group are
referred to as “plant growth-promoting rhizobacteria” (PGPR) (Kloepper et al.
1989). The PGPR are reported to enhance plant growth by a multitudinous mecha-
nism which include production of plant growth-regulating substances (Kloepper
1993; Picard et al. 2000; Saravanakumar et al. 2008; Vyas and Gulati 2009;
Farajzadeh et al. 2012; Santoyo et al. 2012; Bisen et al. 2016), phytohormones, sup-
pression of plant pathogens through antibiosis (Couillerot et al. 2011; Sayyed and
Patel 2011; Singh et al. 2011; Santoyo et al. 2012; Yin et al. 2013; Yokoyama et al.
2013; Sekar and Prabavathy 2014), nitrogen fixation (Franzini et al. 2010; Kathiravan
et al. 2013; Mapelli et al. 2013; Sahoo et al. 2013), mineralization of organic phos-
phorus (Park et al. 2010; Sashidhar and Podile 2010), mediation of abiotic stress
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Fig. 7.1 Schematic representation of the functions and interactions of the rhizomicrobiome
(Source: Mendes et al. 2013)

tolerance (Tringe et al. 2005; Zahir et al. 2009; Palaniyandi et al. 2013; Parihar et al.
2015; Shrivastava and Kumar 2015), production of phytoalexins/flavonoid-like
compounds, and enhancement of mineral uptake (Parmar and Dadarwal 1999). The
microbial community in the rhizosphere harbors members of few groups that
adversely affect plant growth and health, viz., pathogenic fungi, oomycetes, bacte-
ria, and nematodes (Raaijmakers et al. 2009; Damiani et al. 2012; Weller et al. 2012;
Sekar and Prabavathy 2014).

Rhizosphere-associated copious beneficial microbial groups with multi-
beneficial plant growth-promoting traits have been reported by many researchers
(Raupach and Kloepper 1998; Picard and Bosco 2008; Ryan et al. 2008; Hartmann
et al. 2009; Sekar and Prabavathy 2014; Viswanath et al. 2015; Krishnan et al. 2016;
Raju et al. 2016). Bacterial groups secrete signaling molecules that influence bacte-
rial gene expression and physiological behavior in a density-dependent manner
termed quorum sensing (QS) (Zhang and Pierson 2001; Schuhegger et al. 2006; Liu
etal. 2007; Viswanath et al. 2015); especially the rhizosphere regions were reported
to harbor high N-acyl homoserine lactone (AHL) population (Elasri et al. 2001;
DeAngelis et al. 2008; Viswanath et al. 2015). The QS-controlled phenotypes play
a vital role for successful inter-/intra-gene and host interactions, whether symbiotic
or pathogenic (Boyer and Wisniewski-Dyé 2009), and also influence interaction
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with plants such as root colonization and induction of systemic resistance (Pang
et al. 2008; Hartmann et al. 2014).

During the past few decades, the interaction between rhizobacteria and plants
has been well explored and has resulted in the application of microbial products as
crop inoculants (biofertilizers/biopesticides), for increased crop biomass and dis-
ease suppression. Combined application of potential PGPR strains is termed as
microbial consortium (MC) which offers multi-beneficial plant growth-promoting
traits and provides solution to underpinning problems like drought, salinity, increas-
ing temperature, pest, and phytopathogenic infections in the agricultural system
leading to global food safety and security. Microbial consortia are inoculants in a
synergistic mixture which fulfill diverse functions in the rhizosphere and are the
most promising contenders for solving challenges linked to sustainable eco-friendly
agriculture (Jain et al. 2013).

7.3 Microbial Consortium as Biofertilizer and Biocontrol
Agents

Currently agriculture is heavily dependent on mineral fertilizers and inorganic pes-
ticides, and impacts of the continuous application are reflected in deteriorating soil
health and increased resistance to pest and pathogens (Kumar et al. 2010; Cai et al.
2016). In the past 40 years, usage of nitrogen fertilizer has increased by sevenfold
and pesticide usage by threefold. In the future these trends will continue unabated,
as application of both inorganic fertilizer and pesticides is expected to increase by
an additional threefold by 2050 which would cause unprecedented damage to the
agroecosystem (Tilman et al. 2001).

Engineering the plant rhizomicrobiome is an alternative approach to increase soil
health and enhance plant productivity (Jia et al. 2004; Wagg et al. 2011; Chaparro
et al. 2012; Pindi and Satyanarayana 2012). Microbial interaction in the rhizosphere
provides plants with multiple plant growth-benefiting traits and stress-tolerant traits
apart from enhancing their own population and functions (Roesti et al. 2006; Jain
et al. 2012; Wang et al. 2012; Jain et al. 2013; Singh et al. 2013; Thijs et al. 2014;
Keswani et al. 2014; Armada et al. 2015). The inconsistency in performance of
single microbial products in field application has emphasized the need for co-
inoculation or consortia of microbial products (Bashan and de-Bashan 2005).

7.4 Bacteria-Bacteria Consortium for Plant Growth
Promotion

Rhizobia and other PGPR share a common microhabitat, the root—soil interface,
where interaction between different microbial groups was reported during root col-
onization. Co-inoculation of rhizobia with other PGPR enhanced nodulation and
nitrogen fixation through the production of plant hormone, flavonoids, Nod factor,
or enzymes in pigeon pea and other legumes (Tilak et al. 2006; Dardanelli et al.
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2008; Remans et al. 2008; Medeot et al. 2010; Bansal and Srivastava 2012; Gupta
et al. 2015). Azospirillum, a free-living diazotroph, Azotobacter, Bacillus,
Pseudomonas, Serratia, and Enterobacter are a few genera that have been success-
fully used with rhizobium as co-inoculants (Gaind et al. 2007; Remans et al. 2008;
Cassan et al. 2009; Ahmad et al. 2011; Dashadi et al. 2011; Tajini et al. 2012;
Ahemad and Kibret 2014; Gopalakrishnan et al. 2014). Besides the indigenous rhi-
zobia community, inoculated diazotrophs like Azospirillum enhanced growth and
yield in leguminous crops upon inoculation and increased fixed nitrogen quantity
(Remans et al. 2008). Co-inoculation of A. lipoferum and R. leguminosarum bv.
trifolii improved nodulation in white clovers, pigeon pea, and chickpea (Deanand
et al. 2002). Most of the studies showed co-inoculation of Azospirillum, and
Rhizobium significantly increased both the upper and total nodule number, acety-
lene reduction activities, faster 15 N dilution, and the total macro- and micronutrient
mineral content as compared to other inoculants (Rodelas et al. 1996; German et al.
2000; Dardanelli et al. 2008; Askary et al. 2009; Casséan et al. 2009; Dashadi et al.
2011). Mehboob et al. (2013) extensively reviewed the effects of co-inoculation of
rhizobia with various rhizospheric bacteria. Azotobacter was found to be a potential
co-inoculant with rhizobium and enhanced the production of phytohormones and
vitamins (Chandra and Pareek 2002; Qureshi et al. 2009; Dashadi et al. 2011;
Akhtar et al. 2012). Co-inoculation of G. intraradices, Pseudomonas striata, and
Rhizobium showed significant increase in plant growth, number of pods, and chlo-
rophyll content in chickpea root rot (Akhtar and Siddiqui 2008).

Combination of Rhizobium with Bacillus strains was reported to improve root
structure and nodule formation in bean, pigeon pea, and soybean (Halverson and
Handelsman 1991; Srinivasan et al. 1997; Rajendran et al. 2008; Schwartz et al.
2013). Significant increase in root weight and seed yield of chickpea was reported
upon inoculation of Rhizobium with B. subtilis OSU-142 and B. megaterium M-3
(Elkoca et al. 2010). Interaction of Paenibacillus lentimorbus NRRL B-30488 and
Piriformospora indica DSM 11827 and their consortia with native rhizobia popula-
tion in the rhizosphere of Cicer arietinum enhanced nodulation, thereby increasing
plant growth (Nautiyal et al. 2010). When R. tropici CIAT899 was co-inoculated
with Chryseobacterium balustinum Aur9, it resulted in increased root hair forma-
tion and infection sites leading to early nodule development and increased nodule
formation (Estevez et al. 2009). A mixture of Bacillus atrophaeus and Burkholderia
cepacia significantly reduced vascular wilt and corm rot in gladiolus diseases and
enhanced plant growth by the elicitation of defense enzymes under field and green-
house condition (Shanmugam et al. 2011).

Combined application of IAA-producing Pseudomonas sp. and Mesorhizobium
sp. increased nodule formation and plant dry weight compared to Mesorhizobium
alone inoculated and uninoculated (Malik and Sindhu 2011) plants. Similar effects
were observed in chickpea upon co-inoculation with Mesorhizobium sp. and P.
aeruginosa (Verma et al. 2013; Verma et al. 2014). Comparable plant growth-
promoting effects along with antagonistic activities against F. oxysporum and R.
solani were observed in chickpea by co-inoculation of Mesorhizobium, Azotobacter
chroococcum, P. aeruginosa, and T. harzianum.
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Consortia of Burkholderia sp. MSSP and Sinorhizobium meliloti PP3 showed
improved yield of pigeon pea compared to treatment with individual isolates
(Pandey and Maheshwari 2007). Enterobacter increased the nodule numbers in
green gram when co-inoculated with Bradyrhizobium sp. (Gupta et al. 1998).
Similar result was obtained when Medicago truncatula cv. Caliph was co-inoculated
with Pseudomonas fluorescens WSM3457 and Ensifer (Sinorhizobium) medicae
WSM419 (Fox et al. 2011).

Tomato plants inoculated with consortia of Pseudomonas, Azotobacter, and
Azospirillum showed a maximum uptake of K by the shoots’ (~7.97 %) enhanced
fruit lycopene content and antioxidant properties (Ordookhani et al. 2010).
Combined and individual application of P. fluorescens Pf1 and B. subtilis TRC 54
for the management of Fusarium wilt under greenhouse and field conditions
improved defense-related enzymes peroxidase (PO) and polyphenol oxidase (PPO)
and significantly reduced wilt incidence under greenhouse (64 %) and field (75 %)
conditions (Akila et al. 2011). Application of the mixture of phloroglucinol-
producing P. fluorescens F113 and a proteolytic rhizobacterium suppressed sugar
beet damping-off (Dunne et al. 1998). Combination of different strains of
Pseudomonas with iron-chelating and iron-inducing systemic resistance suppressed
Fusarium wilt of radish compared to individual strain application (de Boer et al.
2003). Many strains of fluorescent pseudomonads and Bacillus sp. stimulated seed
germination as well as root and shoot development in several crops (Rudresh et al.
2005). Root-nodulating Sinorhizobium fredii KCC5 and P. fluorescens LPK2e iso-
lated from nodules of Cajanus cajan and disease-suppressive soil of tomato rhizo-
sphere led to protocooperation as evidenced by synergism, aggressive colonization
of the roots, and enhanced growth, suggesting potential biocontrol efficacy against
Fusarium wilt in C. cajan (Kumar et al. 2010).

Co-inoculation of B. subtilis and R. tropici significantly reduced disease severity
of bean root rot caused by F. solani f. sp. phaseoli and enhanced yield compared to
control (de Jensen et al. 2002). P. aeruginosa PYHU1S5, T. harzianum TNHU27, and
B. subtilis BHHU100 from rhizospheric soils triggered defense responses against
Sclerotinia rot through elicitation of host defense response (Jain et al. 2012).
Microbial consortium comprising of P. fluorescens (PHUQ094), Trichoderma
(THUO816), and Rhizobium (RL0O91) activated physiological defense response in
chickpea against collar rot pathogen Sclerotium rolfsii (Singh et al. 2013). Chickpea
treated with consortium showed maximum activity of phenylalanine ammonia lyase
and polyphenol oxidase and accumulation of total phenol content in chickpea than
other treatments. Consortium of B. subtilis, T. harzianum, and P. aeruginosa showed
improved yield along with disease reduction compared to either single or two
microbe interaction upon challenge with the pathogen (Jain et al. 2015).

Interaction between Streptomyces lydicus WYEC 108 and Rhizobium was shown
to promote growth in pea probably by nodule colonization of Streptomyces (Tokala
et al. 2002). Nadeem et al. (2013) pointed out that the use of multi-strain microbial
consortia is a better alternative for efficient performance, survival, and competence
of the inoculum in natural environment and field conditions.
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7.5  Arbuscular Mycorrhizal Fungi (AMF) and Bacterial
Consortium for Plant Growth Promotion

Synergistic interaction between PGPR and AMF has been reported to increase yield
and biomass in several plants under nursery and field conditions (Jia et al. 2004;
Singh et al. 2008; Adesemoye et al. 2009; Singh et al. 2009; Wang et al. 2011; Tajini
et al. 2012). Rhizosphere microorganisms either interfere or benefit mycorrhiza
establishment (Pivato et al. 2009; Bonfante and Genre 2010; Miransari 2011; Tajini
etal. 2012; Aroca et al. 2013). The beneficial effects exerted by the so-called mycor-
rhiza helper bacteria (MHB), a term referring to bacteria which enhance mycorrhiza
formation, were reported by Frey-Klett et al. (2007). AMF and PGPR mycorrhiza
helper bacteria interaction has beneficial implication in agriculture (Rabie et al.
2005; Aliasgharzad et al. 2006; Gamalero et al. 2008; Miransari 2011; Wang et al.
2011; Armada et al. 2015).

Co-inoculation of AMF with one or more PGPR has been reported to enhance
growth and productivity in different crops (Dutta and Podile 2010; Reddy and
Saravanan 2013). Several studies have reported the positive interactions between
AMF and a wide range of PGPR, including phosphate-solubilizing bacteria, nodule-
forming N,-fixing rhizobia, and free-living Azospirillum spp., Bacillus sp., and
Pseudomonas sp. (Gamalero et al. 2008; Singh et al. 2009). Co-inoculation of AMF
and PGPR was reported to have a synergistic effect on plant growth especially under
growth-limited conditions (Vivas et al. 2003a, b). Among the microbial groups,
PGPR and AMF promote activities which improve agricultural development (Barea
et al. 2005). The bioinoculants AMF and PGPR had a significant effect on grain
quality, for instance, the phosphorus content doubled in the bioinoculant-applied
rainfed wheat, both in greenhouse and field experiments (Roesti et al. 2006).
Co-inoculation of AM fungi and biocontrol agents resulted in the suppression of
soilborne pathogens such as Fusarium and Rhizoctonia. Enhanced bioprotection
results by the combination of mechanism exhibited by individual organisms, such
as competition, altered root exudates, morphological changes in the root system,
antibiosis, and activation of plant defense response (Saldajeno et al. 2008).

The AM symbiosis in legumes and its role in improving nodulation and nitrogen
fixation by legume-rhizobia association either at the colonization or symbiotic
functional stage have been reported (Lesueur et al. 2001; Lesueur and Sarr 2008;
Azcoén and Barea 2010). Positive effects of the combination of mycorrhizal fungi
and/or PGPR on plant growth and plant health as biostimulators, biofertilizers, and
bioprotectants have been described by many authors (Barea et al. 2002; Azcén and
Barea 2010; Sharma et al. 2016). Arbuscular mycorrhizal fungi (AMF) and rhizobia
are the most important symbionts for the plant to acquire nutrients efficiently and to
promote growth. Tajini et al. (2012) used Glomus intraradices, a potential P mobi-
lizer, and R. tropici CIAT899, a nitrogen fixer, to increase the phosphorus-use effi-
ciency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.).
Co-inoculation of rhizobia and arbuscular mycorrhizal fungi (AMF) promoted
growth of soybean under low phosphorus and nitrogen conditions, indicated by
increased shoot dry weight (Wang et al. 2011).
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Boby and Bagyaraj (2003) reported the effect of G. mosseae, P. fluorescens, and
T. viride consortium against soilborne root-rot wilt caused by Fusarium chlamydo-
sporum in Coleus forskohlii. Consortia of T. viride and G. mosseae decreased the
disease severity and enhanced maximum growth compared to other combinations.
Another study by Singh et al. (2009) reported the most effective suppression of
root-rot wilt in C. forskohlii by a consortium of AM fungus G. fasciculatum and P.
fluorescens. Though in both the reports consortium showed enhanced biocontrol
activity against root-rot wilt, the combination of efficient compatible strains in the
consortium contributes to more efficient control of the pathogen.

Consortium of Bradyrhizobium sp. BXYD3 and G. mosseae significantly
decreased the severity of Cylindrocladium parasiticum incidence in soybean by
altering the pathogen defense-related (PR) genes PR2, PR3, PR4, and PR10 expres-
sion level (Gao et al. 2012). A combined bio-inoculation of 2,4-diacetylphlorogluci
nol-producing PGPR strains and AMF synergistically improved the nutritional
quality of the grain in three Indian rainfed wheat without negatively affecting
mycorrhizal growth (Roesti et al. 2006), and in addition it stimulated both mycelial
development and spore germination in G. mosseae and enhanced root colonization
in tomato (Barea et al. 1998). Combined application of AM fungus F. mosseae with
Paenibacillus and Pantoea spp. enhanced all the biometric parameters in French
bean especially the total shoot dry biomass and fruit yield.

Rhizobium and AMF co-inoculation increased leaf area and biomass production
in broad bean (Vicia faba), AMF colonization increased the supply of P, and
Rhizobium facilitated N accumulation (Jia et al. 2004). The application of a consor-
tium of microbial inoculants such as mycorrhiza and Azospirillum brasilense effec-
tively increased plant growth and enhanced the ability of plants to alleviate drought
and nutrient stress (Azcén and Barea 2010). AM fungus G. intraradices enhanced
growth, photosynthetic efficiency, and antioxidative response in rice against drought
stress (Ruiz-Sanchez et al. 2010).

Kamal et al. (2016) evaluated the impact of Streptomyces labedae (SB-9),
Streptomyces flavofuscus (SA-11), Pseudomonas poae (KA-5), P. fluorescens (KB-
7), and G. intraradices consortium combination which showed pronounced increase
in the finger millet plant growth under drought condition.

Seed priming with consortia of 7. harzianum and fluorescent pseudomonas
decreased the Fusarium wilt incidence, increased seed germination by 2248 %,
and reduced the germination period (Srivastava et al. 2010). The enhanced perfor-
mance of microbial consortia compared to single inoculation is reported in several
crops including legumes (Antoun et al. 1998; Valdenegro et al. 2001; Ane et al.
2004; Bagyaraj and Kehri 2012; Bagyaraj 2014). Consortium product “Shu Dekang”
showed significant control of several phytopathogenic infestations like leaf speck
disease, banana wilt, and root-knot disease (Zheng et al. 2010). Thus, PGPR consor-
tia with multiple functions provide multiple growth-promoting and stress-tolerant
benefits in plants.
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7.6 Microbial Consortium for Abiotic Stress Alleviation

The global climate is a great challenge for the agricultural sector, as predicted
increases in salinity, drought, and rising temperature cause abiotic stress in the plant
which reduce crop productivity (Grover et al. 2011; Larson 2013). About 60 % of
the global geographical area faces soil degradation either by waterlogging or salin-
ity or alkalinity, which threatens food security, the situation being worse in higher
rainfall areas where waterlogging follows shortly after the rains (Singh 2000).

Plant-associated microbial communities have received considerable attention for
their ability to confer many of the same benefits to crop productivity and stress
resistance as have been achieved through plant breeding programs (Mayak et al.
2004; Barrow et al. 2008; Marulanda et al. 2009; Mapelli et al. 2013). Microbial
symbionts are capable of conferring multiple stress tolerance against both abiotic
and biotic stress (Mayak et al. 2004; Rodriguez et al. 2008) benefits in both mono-
cot and dicot crop species (Timmusk and Wagner 1999; Redman et al. 2002; Zhang
et al. 2008).

Application of microbial inoculants specially consortia will be one of the solu-
tions to alleviate plant abiotic stress and enhance plant growth and productivity
under stress conditions (Yang et al. 2009; Jain et al. 2013). Multiple beneficial PGP
and abiotic stress-resistant strains, efficient 2,4-DNT-degrading consortia composed
of Burkholderia, Variovorax, Bacillus, Pseudomonas, and Ralstonia spp., have been
reported (Shirley et al. 2000; Snellinx et al. 2003) to enhance the root length of
Arabidopsis under 2,4-DNT stress, by doubling the root length within 9 days (Thijs
et al. 2014).

Co-inoculation of A. brasilense with R. tropici on bean relieved negative effects
of salt stress and nod gene transcription (Dardanelli et al. 2008). Microbial consor-
tium comprising of P. fluorescens (PHUQ094), Trichoderma (THUO0816), and
Rhizobium (RL091) enhanced the expressions of defense systems like antioxidant
enzymes superoxide dismutase and peroxidase activities (Singh et al. 2013) under
stress. The response of rice plants to inoculation with an AMF and A. brasilense
consortia under drought stress conditions was due to enhanced ascorbate accumula-
tion. The effect of A. brasilense was pronounced only when mycorrhizal coloniza-
tion was established; thus, the bacterial and fungal consortia were responsible for
the protection of plant against plant pathogens (Ruiz-Sanchez et al. 2011). PGPR
consortium of endophytic bacterium P. pseudoalcaligenes in combination with B.
pumilus-treated plants showed increased concentrations of NPK and reduced con-
centrations of Na and Ca in paddy under saline conditions (Jha and Subramanian
2013). Co-inoculation of P. fluorescens Aur6 and Chryseobacterium balustinum
Aur9 in three field experiments induced systemic resistance in rice against rice blast
and increased rice productivity and grain quality under saline conditions (Lucas
et al. 2009).

Under drought stress cucumber seedlings treated with consortium product of Shu
Dekang containing B. cereus AR156, B. subtilis SM21, and Serratia sp. XY21
showed enhanced photosynthetic efficiency, less wilt symptoms, decreased leaf
monodehydroascorbate (MDA), increased leaf proline content, enhanced induced
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systemic tolerance, and superoxide dismutase activity. Downregulation of the
expression of the genes cAPX, rbcL, and rbcS encoding cytosolic ascorbate peroxi-
dase and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large and
small subunits was observed (Wang et al. 2012).

Consortium of P. polymyxa and R. tropici increased plant growth, nitrogen con-
tent, and nodulation of common bean (Figueiredo et al. 2008). The co-inoculation
of G. intraradices and R. leguminosarum protected bean plants under drought con-
ditions in semiarid region by increase in plant biomass, grain yield, and several
antioxidant enzyme activities in the host plants (Zahran 1999; Valdenegro et al.
2001; Aroca et al. 2007).

The consortium of Pseudomonas mendocina and G. intraradices protected and
enhanced plant growth in Lactuca sativa L. cv. by the production of antioxidant
enzymes such as superoxide dismutase, catalase and total peroxidase, phosphatase,
and nitrate reductase in leaves (Kohler et al. 2008). Under salinity stress inoculated
plants showed significantly higher shoot biomass and glomalin-related soil protein
(GRSP) compared to uninoculated plants (Kohler and Caravaca 2010). A. brasi-
lense—Rhizobium combination enhanced the growth of P. vulgaris under salt stress
by increasing nodulation, flavonoid, and lipochitooligosaccharide production
(Dardanelli et al. 2008; Smith et al. 2015). Gamalero et al. (2008) showed the impact
of ACC deaminase in cucumber treated with PGPR P. putida UW4 and Gigaspora
rosea, where synergistic action was reflected on plant biomass, root length, total
leaf area, and increased photosynthetic performance index. Zea mays co-inoculated
with Rhizobium and Pseudomonas under salinity conditions showed increased pro-
duction of proline and maintenance of relative water content of leaves, reduction in
electrolyte leakage, and selective uptake of K ions (Bano and Fatima 2009).

Consortium of B. thuringiensis and AMF reduced the oxidative damage to lipids
and increased drought-induced proline in Zea mays under stress. B. thuringiensis
increased plant nutrition, and AMF enhanced the stress tolerance/homeostatic
mechanisms, by regulation of plant aquaporins with many putative physiological
functions (Armada et al. 2015). B. subtilis and Arthrobacter sp. co-inoculation alle-
viated adverse effects of 8 % soil salinity on wheat and enhanced the dry biomass,
total soluble sugars, proline content, and antioxidant enzymes in wheat leaves which
decreased under salinity stress (Upadhyay et al. 2012). Prasanna et al. (2015) used
cyanobacterial inoculants Anabaena—Azotobacter biofilm and Anabaena sp.—Provi-
dencia sp. to enhance the Zn mobilization in maize hybrids and elicit plant defense
response. Both consortia were found to enhance the activity of defense enzymes
such as polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonia
lyase (PAL) in roots, with a positive correlation of Zn concentration in the flag leaf.

7.7 Commercialization and Registration of Biofertilizers
in the World

Unlike in microbial biopesticide category, microbial consortia are acknowledged
and promoted in the case of biofertilizers in many countries. In the USA and EU,
currently there is no specific legal definition for biofertilizers. In EU, all microor-
ganisms irrespective of its principle action are included as possible products for
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organic production as per the European Commission Regulation No. 889/2008
(Malusa and Vassilev 2014). But, India has a comprehensive legal framework on
biofertilizers. The Ministry of Agriculture issued an order in 2006 (subsequently
amended in 2009) categorizing the biofertilizers under Essential Commodities Act
of 1966 and brought under Fertilizer Control Act 1985. Under this act production
and marketing standards were specified for different biofertilizers. As per the defini-
tion of biofertilizer under the Indian act, it does not specify any microbial consortia,
while the proposed concept of microbial consortium under the legal provision regu-
lating the production and marketing of biofertilizer in EU was specified in the defi-
nition itself (Malusa and Vassilev 2014).

7.8 Biofertilizer Commercialization and Regulatory Issues
in India

Biofertilizer commercialization began with the rhizobia product in the year 1895 by
Nobbe and Hiltner under the brand of “Nitragin.” In India, N. V. Joshi first started
the commercialization of rhizobium for the growth promotion of leguminous plant
(Rivas et al. 2015). During its ninth five-year plan, the Ministry of Agriculture initi-
ated the popularization and promotion of biofertilizer production, developing stan-
dards for different biofertilizers, training, and utilization by launching National
Project on Development and Use of Biofertilizers (NPDB), and a National
Biofertilizer Development Centre was established, with six regional centers (Ghosh
2004). The government of India and state governments took several measures for
promoting the production of biofertilizers by providing grants and subsidies at dif-
ferent levels.

The Ministry of Agriculture passed a new decree on the control of biofertilizer
production and marketing standards with regard to different kinds of microorgan-
isms. The product should fulfill seven quality parameters like physical form, mini-
mum count of viable cells, contamination level, pH, particle size in the case of
carrier-based materials, maximum moisture percent by weight of carrier-based
products, and efficiency character. In bacterial bioproducts the minimum viable
cells to be maintained is 5 x 10" CFU g™! for solid carrier or 1 x 108 CFU ml™! for
liquid carrier. For products containing mycorrhizal fungi, at least 100 viable propa-
gules must be present per gram of product. Nitrogen-fixing efficiency of biofertil-
izer product should be capable of fixing at least 10 mg N g~! of sucrose consumed
and for phosphate solubilization product a zone of solubilization at least 5 mm in a
media. AMF products should provide 80 infection points in roots g=' of inoculum
(Ministry of Agriculture 2009).

Markets and Markets (2015) report shows that the biofertilizer market is pro-
jected to grow at a CAGR of 14.0 % from 2015 to 2020 and is expected to reach US
$1.88 billion by 2020. Leading players in the biofertilizer market include Gujarat
State Fertilizers & Chemicals Ltd. (India), Novozymes A/S (Denmark), Rizobacter
Argentina S.A. (Argentina), Camson Bio Technologies Limited (India), and
Lallemand, Inc. (Canada) (RNR Market Research 2014). Biofertilizer market in
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Asia is strongly influenced by the government and its policies to promote sustain-
able and green agriculture. Around US $1.5 billion has been spent on the develop-
ment of biofertilizer and biopesticide products (Rivas et al. 2015). Currently there is
an increase in organic agriculture practice in the country with around 1,000,000 ha
under organic cultivation (Keshri 2016).

In India, around 100 public and private companies are involved in biofertilizer
production, and the list of a few companies and their consortial products are listed
in Table 7.1 (Rivas et al. 2015). Biofertilizer production and consumption have
gained importance in the recent times in India (Pindi and Satyanarayana 2012). The
average consumption in the country is about 45,000 t per annum, while its produc-
tion is less than half of the consumption. The maximum production capacity lies in
Agro Industries Corporation followed by state agriculture departments, National
Biofertilizers Development Centres, State Agricultural Universities, and private
sectors (Mazid and Khan 2014).

7.9 Commercialization and Registration of Biopesticides
in the World, Asia, and India

Worldwide the use and demand for biopesticides are rising due to the increased
awareness of pesticide residue-free crops. The global-level estimate for microbial
products in 2014 was US $ 2,183 million which is projected to double by US $ 4556
million in 2019 with a CAGR of 15.3 %. Of the several microbial types, the bacte-
rial segment accounted for the largest share (US $1.6 billion). Similar to biopesti-
cides, market for biofertilizers at global level is projected to reach US $1.88 billion
by 2020 at a CAGR of 14.0 % from 2015 to 2020 (Markets and Markets 2015).
Globally, more than 200 biopesticide active ingredients are registered, and 700
products are available in the market. In the case of India, 15 biopesticides were
registered as on 2008 under 1A (1968), and its market share is only 4.2 % of the
overall pesticide market; however, it is predicted to increase at an annual growth
rate of 10 % (Suresh 2012). While its growth was multifold during the past years,
NAAS (2013) reported around 400 registered biopesticide active ingredients and
over 1250 actively registered biopesticide products in Indian markets. It shows the
awareness among farmers as well as policy support of the government to use the
ecologically safe products for pest management. However, there is no specific men-
tion about microbial consortium among 400 registered biopesticides individually.
At the international level, the regulatory frameworks differ widely among differ-
ent countries. In the USA, biopesticide production is institutionalized under a sepa-
rate division as “Biopesticides and Pollution™ within the Environmental Protection
Agency (EPA). To maintain the quality, it specified good laboratory practices regu-
latory testing for microbial biopesticides in 1983 as EPA M guidelines. Following
the line, in 1996 the Japanese Ministry of Agriculture, Forestry and Fisheries
(JMAFF) harmonized its system with guidelines of EPA. Similarly in Europe,
biopesticides are evaluated through the European Pesticide Regulation EC No.
1107/2009 which promotes the production of less harmful substances, and it has
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Table 7.1 List of few representative commercial consortial products
S. no Product Consortia Company Country
1. |Life® PGPR consortia Biomax India
2. | Biomix® PGPR consortia Biomax India
3. Biozink® PGPR consortia Biomax India
4. | Biodine® PGPR consortia Biomax India
5. |Jet9 PGPR consortia Sivashakthi India
Bio Planttec
Ltd.
6. | Calosphere PGPR consortia Camson Bio | India
Technologies
Ltd.
7. | Calspiral Azospirillum + PGPR Camson Bio | India
Technologies
Ltd.
8. | Symbion-N Azospirillum + Rhizobium + Acetobacter + |T. Stanes & India
Azotobacter Company
Ltd.
9. | Bio Power Azospirillum + Azotobacter + PSB + VAM | SKS India
Bioproducts
Pvt Ltd.
10. | Bio Super Pseudomonas + Cellulomonas + Bacillus SKS India
+ Rhodococcus Bioproducts
Pvt Ltd.
11. |Premium EMC | PGPR consortia International | India
Panaacea
Ltd.
12. | Nodulator® B. subtilis MBI 600 + B. japonicum BASF Canada
N/T Canada, Inc.
13. | Nodulator® B. subtilis + B. japonicum BASF Canada
PRO Canada, Inc.
14. | BioBoots® Delftia acidovorans + Bradyrhizobium sp. | Brett-Young | Canada
Seeds
15. |EVL Coating® | PGPR consortia EVL, Inc. Canada
16. | BioAtivo® PGPR consortia Instituto de Brazil
Fosfato
Biolégico
(IFB) Ltda.
17. | BioJet® Pseudomonas sp. + Azospirillum sp. Eco Soil USA
Systems,
Inc., San
Diego, CA
18. | BioYield B. subtilis + B. amyloliquefaciens Gustafson, USA
Inc., Dallas
19. | TagTeam® Rhizobia + Penicillium bilaii Novozymes | USA
20. | VitaSoil® PGPR consortia Symborg Spain
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been promoting the registration of low-risk products for pest control through
(2009/128/EC) simple and transparent registration protocols (Villaverde et al.
2014). Canada follows only the safety test and the rest of the countries need data of
both safety and efficacy tests. The EPA, JMAFF, and EC regulations toward biopes-
ticides are developed in such a way that it requires less data when compared to
chemical products and reduced the time to process the registration applications. In
this context, the International Organization for Biological Control of Noxious
Animals and Plants (2010) carried out a global-level review on the use of biopesti-
cides and regulatory measures. It stressed the need for streamlining the registration
process through harmonizing data requirements and protocols for risk assessments.
In India, any microorganisms used for pest and disease management require regis-
tration for both production and sale with the Central Insecticides Board (CIB) of the
Ministry of Agriculture as per the Insecticides Act (IA), 1968, of the Government of
India (GOI) and Insecticides Rules, 1971, which were recently replaced by the
Pesticides Management Bill 2008. The biopesticides are considered as generally
regarded as safe (GRAS) under this act, and to promote its production and use, it
provides the benefit of priority in processing of registration as well as provisional
registration. Thus, the producers can register the product either for regular registra-
tion under section 9 (3) or for provisional registration under section 9 (3B) of the
IA. While applying for registration, the data on product characterization, safety,
toxicology, efficacy, and labeling are necessary. In addition to the priority and pro-
visional registration for biopesticides in the Act, the registration protocols are made
easier and accept generic data for any new products containing strains which are
already registered. Such affirmative clauses are inbuilt in the Act which shows the
interest of the government in promoting the safe products for pest management
similar to other countries. In order to regulate the commercial production of these
products, the Government of India established four different bodies to regulate the
biopesticide production. The Central Insecticides Board (CIB) is involved in devel-
oping appropriate policies, and the Registration Committee (RC) is responsible to
register the products for production. Whereas the Central Insecticides Laboratory
(CIL) is in charge to monitor the quality of the products available in the market,
finally the State Department for Agriculture (SDA) issues the manufacturing license
and performs quality check. However, coordination among the four bodies plays a
vital part in ensuring the registration and availability of quality products in the mar-
ket. Recently, efforts were taken to harmonize the A of 1968 with the Organization
for Economic Cooperation and Development (OECD) during 2000s on the methods
and approaches to assess biological pesticides. On this basis, CIB has rationalized
the guidelines and data requirements for registration and infrastructure necessary
for production of the biopesticides (NAAS 2013). However, research studies on
how the harmonization eased the process of registration are yet unavailable. On the
other side, as per the notification dated March 26, 1999, of the Central Insecticides
Board, Ministry of Agriculture, biopesticide was put under the Insecticide Schedule
Act 1968, and hence, the generation of toxicological data became a prerequisite for
the registration of biopesticide. In spite of the relatively abundant number of patents
for microbial pesticides, the number of commercial applications has not been as
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dramatic as expected due to the high cost involved in toxicologic analysis, biosafety,
and environmental concerns (Montesinos 2003).

7.10 Registration and Regulations for Microbial Consortia

Though research-based evidences clearly show the advantages of microbial
consortia-based products due to their multifunctionality, limited attention is being
given to develop quality standards for registration (Jain et al. 2013). NAAS (2013)
reiterated that microbial consortium-based products require meticulous calibration
in terms of cultural methods and their microbial composition in the product cycle. It
is well understood that the evaluation of the efficacy of biofertilizer-based microbial
consortia is complex due to its multiple mechanisms of action, viz., plant growth
protection, stimulation, etc. However, farmers and market agencies prefer microbial
consortia-based products due to its practical easiness in use, economic reasons, and
multifunctional properties. Hence, initiatives have been taken to address the con-
cern at different levels. The overall matter appears even more complex as some
microorganisms either as single or as member of the microbial consortia can have
both effects as biofertilizers/bioeffectors and plant protectants. The study of Malusa
and Vassilev (2014) suggested that the principal function of the product can be taken
for classification and labeling considering its potential environmental risks and
study of its ecotoxicology and impact on environment when other products such as
additives or nanomaterials are included in the formulations.

7.11 Conclusion

Though the performance of the PGPR and its consortia has been proved to promote
plant growth and enhance productivity in the field conditions by several strains in
different crops, the use of these products has not been popular among farmers due
to several reasons such as (1) lack of awareness among farmers and (2) availability
and supply of quality bioproducts. A survey conducted by Srinivas and Bhalekar
(2013) reported the communication gap that exists between farmers and manufac-
tures, miscommunication about the quality of the product, and sustainability of bio-
fertilizer as the major hurdle. In natural conditions and in disease-suppressive soil,
the existence of mixture of microbial antagonists (Lemanceau and Alabouvette
1991) has been reported. Hence, augmentation of compatible strains of PGPR to
infection court will mimic the natural environment and could broaden the spectrum
of biocontrol against different plant pathogens. Efficiency of biocontrol agents
could be increased by the development of compatible strain mixtures of different
biocontrol organisms by considering the following norms (Raupach and Kloepper
1998). While developing a consortial formulation, the following needs to be
addressed: (1) compatible strain combination that differs in the pattern of plant col-
onization, (2) compatible strain combination with broad spectrum of action against
different plant pathogens, (3) compatible strain combination with different modes
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of action, and (4) compatible strain combination of genetically diverse group to
adapt to different pH, moisture, temperature, and relative humidity. The use of
microbial inoculants must take into account the importance of retaining microbial
diversity in the rhizosphere and in achieving realistic and effective biotechnological
applications. Molecular biology-based approaches by developing molecular mark-
ers to analyze the impact of the introduced isolate on the microbial diversity and
community structure and to predict responses to microbial inoculation/processes in
the environment (ecological engineering) are essential. Further studies must address
the consequences of the cooperation between microbes in the rhizosphere under
field conditions to assess their ecological impacts and biotechnological applica-
tions. In this context further research and efforts are needed to promote the use of
microbial consortia considering its multifunctional characteristics; at the same time,
quality standards for the crop-specific/soil property-specific potential combination
of microbes have to be generated to ease the registration process. While developing
such standards, harmonization at global level would help to speed up the process
and reduce the time and resources which are vital to promote quality products.
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