Technological Opportunities for Distress Mitigation in Most Seriously Affected Areas of Wardha District

M S Swaminathan Research Foundation Chennai

Office of the Principal Scientific Adviser to the Government of India, New Delhi

Final

Technological Opportunities for Distress Mitigation in Most Seriously Affected Areas of Wardha District

Manjula. M

August 2010

M. S. Swaminathan Research Foundation III Cross Street Taramani Institutional Area Chennai

Office of the Principal Scientific Adviser to the Government of India, New Delhi

Contents

Acknowled	lgment	
Introducti	o n	1
Section 1	Lonsawali Village <i>Panchayat</i>	
1.1	Salient Features of Lonsawali Village Panchayat	4
1.2	Issues in Agriculture in Lonsawali Village Panchayat	7
1.2.1	Soil Health	7
1.2.2	Irrigation	10
1.2.3	Watershed	13
1.2.4	Cultivation Practice	14
1.2.5	Agricultural Extension	16
1.2.6	Barren and Fallow Land	19
1.2.7	Wild Life Menace	20
1.3	Action Plan for Sustainable Agricultural Development in Lonsawali	21
	Panchayat	
Section 2 V	Vardha District	
2.1	Issues in Agriculture in Wardha District	33
2.1.1	Land use, Cropping Pattern, and Crop Production	33
2.1.2	Rainfall and Soil Characteristics	35
2.1.3	Soil and Water Conservation Efforts	37
2.1.4	Soil Health	40
2.1.5	Soil Test Labs	41
2.1.6	Irrigation	42
2.1.7	Structural Changes in the Department of Agriculture & Implications for	43
	Field Level Advisory/Activity	
2.1.8	Agricultural Extension Reforms	46
2.2	Action Plan for Sustainable Agricultural Development in Wardha	48
	District	
Section 3	Conclusion	60
	References	61
	Annexure	62

List of Table/Map/Figure/Annexure

No. Title				
		No.		
Table 1	Results of Soil Test in Lonsawali Panchayat	7		
2	Status of Essential Nutrients other than NPK in Soils of Lonsawali	8		
	Panchayat			
3	Soil Microbial Test Results, Lonsawali Panchayat	9		
4a	Average Per Acre Fertiliser Application by Cotton Farmers Across	15		
	Size Classes in Lonsawali Panchayat			
4b	Average Per Acre Fertiliser Application by Soyabean Farmers	16		
	Across Size Classes in Lonsawali			
5	Awareness and Access to Department of Agriculture Scheme in	17		
	Lonsawali Panchayat			
6	Wardha Taluk Agriculture Office – Staff Strength	18		
7	Yield of Major Crops, Wardha District	34		
8	Index of Instability in Yield of Crops, Wardha District	35		
9	Land Capability Classes – Wardha District	37		
10	Watershed Details of Ongoing Projects in Wardha district	39		
11	Soil Fertility Index – Wardha District	41		
12	Wardha District Agriculture Office – Staff Strength	43		
13	An Analysis of Watershed Activities, Wardha District	45		
Map 1	Map of Wardha	1		
2	Resource Map of Lonsawali Panchayat	5		
3	Watershed Map of Lonsawali Panchayat	13		
Fig 1	Dam Structures	10		
Annexure 1	List of People Interacted With	62		
2	Budget for Setting up a Biofertiliser Unit	64		
3	Budget for Setting up a Village Level Mini-Agromet Observatory	65		

Acknowledgement

The study *Technological Opportunities for Distress Mitigation in Most Seriously Affected Areas of Wardha District* attempts to draw action plans for scalable model of sustainable agricultural practices in Wardha district. The study has been funded by the Office of the Principal Scientific Adviser to the Government of India. I owe a special word of thanks to Dr. R. Chidamabaram, Principal Scientific Adviser, GOI, for his support. I am grateful to Dr. R. P. Gupta, Scientist E, PSA's office for his support.

I am thankful to Dr. R. Rukmani, *Director i/c* Food Security under whose principal guidance the study was done for bestowing confidence in me to carry out the study. She helped plan and execute the study. Her critical inputs, guidance and valuable comments were instrumental in shaping the study.

I would like to thank the government officials from various Government Departments in Wardha for taking time off to answer all my queries and providing valuable inputs. I also thank the officials in the various NGOs and the microbiologists at the Microplex lab at Wardha for their time and inputs.

My deep sense of gratitude to the farmers of Lonsawali *panchayat* for their valuable time and patience in answering our queries. The support and help received from my colleagues at MSSRF Wardha, Mr. Kishor Jagtap, Ms. Charusheela Thakre and Ms. Jyotsna Raut need a special mention. The inputs provided by the MSSRF staff at the Waifad VRC and the Knowledge Worker at Lonsavali VKC were very useful for the study.

I am grateful to Ms. S. Punitha of GIS section, MSSRF for the maps used in the study. She was sportive in putting up with the frequent demands for modification in the maps. I would like to acknowledge the active help and support extended by my friends and colleagues Drs. R. Rengalakshmi and V. Prabhavathy. Their technical inputs and comments have been of great help in the study. I thank my colleagues Mr. S. Sekar and Mr. P. Thirunavukarasu for the help they rendered.

My special thanks to Mr. A Sakthi Velan for his help in the final stages of the report. Finally, my thanks are due to all my friends and colleagues who helped in various ways during the study period.

Manjula. M

Introduction

Wardha district (20° 18' to 21° 21' N. and 78° 4' to 79° 15' E) lies in the Vidarbha region of Maharashtra. The district is bounded on the north by Nagpur district and the south east by Chandrapur district and on the west by Amravati and Yavatamal districts. (Map 1). The district covers 6,309 sqkm. The district is divided into 3 major revenue sub divisions namely Wardha, Arvi, and Hinghanghat. For administrative purpose these divisions are further sub divided into 8 taluks¹.

Map 1. Wardha District

The district consists of a total of 1004 inhabited villages and 7 towns. The total population of the district is 1.2 million as per Census 2001. The district has a total of 8, 65,556 literate persons and a literacy rate of 80.06 per cent. The district is rural in nature with 74 per cent of its total population living in rural areas. The district has a predominantly agrarian economy with 65 per cent of the main workers being engaged in agricultural activities, either as cultivators or as agricultural labourers. The total cultivable area of the district is 4729 sqkm, which is about 75 per cent of the total geographical area of the district. The total livestock population of the district is 5.69

¹ The taluks are Wardha, Seloo, Samudrapur, Hinghanghat, Deoli, Arvi, Ashti, and Karanja

lakh of which 4.05 lakh are bovines and bovines' accounts for 71 per cent of the total livestock population of the district². The cropping pattern of the district could be described as cash crop based production system with cotton and soyabean together accounting for about 71 per cent of the gross cropped area as of 2005-06. The other major crops of the district are red gram and sorghum.

Agriculture in Wardha is rainfed in nature. The district receives an average annual rainfall of 1041 mm. Black soil is the predominant soil type in the district and it is classified into heavy, medium and light categories. Wardha district forms a part of Wardha river basin. There are 4 major irrigation projects and 7 medium irrigation projects planned on Wardha river and its tributaries³. The predominant source of irrigation in the district is still ground water with 85 per cent of the total operational holding that is irrigated depending on open wells as a source of irrigation even by 2000-01⁴. This accounts for 83 per cent of the total net irrigated area in the district.

Rainfed agriculture that is practiced in Wardha district is largely dependant on the south west monsoon. South west monsoon- the lifeline of agriculture in Wardha district is erratic in nature, is skewed in its distribution, and shows a declining trend with a reduction in the number of rainy days. This has serious surface soil and water run-off implications for an area like Wardha, which has soils with poor water holding capacity⁵. Soil and water run off has very severe adverse impact on soil nutrient status, crop productivity and subsequently on the food and livelihood security of the rural people⁶.

However, the adverse impact of the peculiar nature of the rainfed agriculture in Wardha can be mitigated by adopting appropriate interventions. Planning and implementing appropriate interventions are absolutely essential to sustain and improve agriculture on which nearly three fourths of the district's population depends.

² Government of Maharashtra 2005

³ The tributaries are Wena, Pothra, Bor, Dham, Asoda, Bakli, and Kar.

⁴ <u>www.agcensus.nic.in</u>; World agricultural census 2000-01. The total number of operational holding receiving irrigation as of 2000-01 is 21124 hectare. The total number of operational holding receiving irrigation from open wells is 18010.

⁵ Inferences on the soil properties are drawn from the publications of National Bureau of Soil Survey and Land Use Planning, Nagpur.+

⁶ Both the Government of Maharashtra in 2005 and Government of India in 2006 had identified the district as agriculture related suicide prone district and had introduced special packages to address the agricultural distress situation in the district.

The study attempts to draw action plans for scalable model of sustainable agricultural practices at two different levels – at the district level, and at the *panchayat* level. *Panchayat* level planning is attempted by taking the case of one *panchayat*, namely Lonsawali *panchayat*, in the district. The study uses a combination of primary and secondary data sources. Focus group discussions, participatory resource mapping, and participatory planning was done with the farmers in the village *panchayat*. Our previous study on Wardha district⁷, the knowledge about the agricultural scenario in the district, the interactions with the officials of the different line departments and NGOs working in the area have been helpful in formulating an action plan for the district⁸.

The report is organized into two major sections. Section 1 discusses the action plan drawn for Lonsawali village *panchayat* and section 2 presents the action plan for Wardha district as a whole.

⁷ MSSRF had done a study on the technological dimension underlying agricultural distress in Wardha district. The study is titled '*Designing Rural Technology Delivery System for Mitigating Agricultural Distress- A study of Wardha District*'

⁸ The list of officials and individuals interacted with is given in annexure 1.

Section 1

Lonsawali Village Panchayat

1.1. Salient Features of Lonsawali Village Panchayat⁹

Lonsawali village *panchayat* falls in Wardha taluk of Wardha district. The *panchayat* is bounded in the north by hills, in the north west and south west by Bori, and Kurchadi villages respectively and in the south by Waifad village (Map 2). The *panchayat* is located about 25 km from the district headquarters of Wardha. The village *panchayat* of Lonsawali comprises of the villages, Lonsawali, Dorli and the hamlet Shekapur. The *panchayat* office is located in Lonsawali. The total geographical area of the *panchayat* is 2087.66 hectares. Lonsawali *panchayat* has 440 households and a total population of 1888. Of this 895 are females and 993 are males¹⁰ (Census 2001). The general literacy rate of Lonsawali *panchayat* is 54.9 percent, while that of the district is 78.50 per cent. The female literacy rate for the *panchayat* is 48.04 per cent while that of the district is 73.84.

Agriculture is the main source of livelihood of the people of Lonsawali with almost 85 percent of the total workers of the village *panchayat* being engaged in agriculture. As per 2001 census, the *panchayat* has about 941 cultivators and agricultural labourers. The total cultivable area of the *panchayat* is 1477 hectares which is about 76 per cent of the total geographical area of the *panchayat*. Agriculture is predominantly rainfed and the main crop growing season is kharif which extends from June-July to Nov-Dec. The major crops are cotton, soyabean, red gram, and sorghum.

The major soil types in Lonsawali *panchayat* is black (light to medium) and red soil. Black soil is the predominant soil type in the *panchayat*. The soils in Lonsawali are of low to medium productive capacity. They have low organic carbon content, (which is an indicator of available nitrogen), low level of available phosphorous, and medium to high level of available potash. Agriculture in Lonsawali is predominantly rain fed. The area under irrigation throughout the year is 28.20 hectares, which is only about 2 per cent of the total cultivable area of the *panchayat*. The major source of irrigation in

⁹ The section relies on the Village Adarsh Tatka and Cenus data

¹⁰ The figures for Lonsawali *panchayat* has been arrived by adding up the figures for the revenue villages Lonsawali and Dorli which together form the Lonsawali *panchayat*. Lonsawali revenue village comprises of village Lonsawali and hamlet Shekapur. (Census 2001)

the panchayat is ground water. The panchayat has around 186 wells. All the wells have water throughout the kharif season, but only a few have water during rabi. As of March 2010 only 50 wells that is less than $1/3^{rd}$ of all wells had water in them during rabi season. While majority of the wells are fitted with electric pumps there are a few diesel pumps too¹¹. Lonsawali *panchayat* has two minor irrigation tanks the Shekapur tank, and the Jugadhari tank¹². The catchment area¹³ of both the tanks is 194 hectares each. The source of water for the tanks is the run-off water from the surrounding hills. The irrigable command area¹⁴ of Jugadhari tank is 208 acres and that of Shekapur is 204 acres.

Map 2. Resource Map of Lonsawali Panchayat

¹¹ In the year 2009, there were 124 electric motor pumps in Lonsawali *panchayat* of which 6 are diesel pumps.¹² Shekapur tank was completed in the year 1983 and Jugadhari tank was completed in 1990.

¹³ Catchment area of a tank is the area which serves as a water collection source for the tank.

¹⁴ Irrigable command area is the area under the tank command that can be irrigated when the tank has water up to the full tank level.

A seasonal river Badadi runs across Lonsawali village. There is a KT weir across this river near the Jugadhari hamlet in Lonsawali. The KT weir functions as artificial recharge structures. The shutters of the KT weir are removed at the beginning of monsoon during the month of July, and they are placed back when the monsoon recedes during the month of September. This prevents run off of rain water after the monsoon season and the retained water helps in ground water recharge. Lonsawali *panchayat* was part of the NABARD Holistic Watershed Development Project in Lonsawali Cluster. The watershed covered 2065 ha in Lonsawali *panchayat*, which is almost 98.9 per cent of the total geographical area of the *panchayat*.

1.2. Issues in Agriculture in Lonsawali Village Panchayat:

It is a well established fact that yield gap (the difference in yield in farmers field and the field level demonstration plots of the agricultural research stations) is very high in most of the crops in India. Agricultural productivity or crop yield is determined by a wide range of factors such as natural, physical, economical, behavioural etc. This section explores some of the limiting factors for agricultural productivity growth in Lonsawali *panchayat*, ranging from poor soil fertility status and poor soil management to absence of an effective extension system and wild life menace in the *panchayat*.

1.2.1. Soil health

Soil health indicates the productive capacity of the soil. Soil testing was done for about 50 samples in Lonsawali village in 2009-10¹⁵. The soils were tested for the status of the available macro nutrient like nitrogen, phosphorous, and potassium. The soil test results are given in Table 1. The soils in Lonsawali are found to have generally low to medium organic carbon content, (which is an indicator of available nitrogen), low level of available phosphorous, and medium to high level of available potash.

(runner of sumples in each category)							
Nutrient	Low	Medium	High	Total			
Organic carbon	31	17	2	50			
Available	49	1	nil	50			
phosphorous							
Available potash	7	23	18	50			

Table 1 Results of soil test in Lonsawali Panchayat(Number of samples in each category)

Source: Based on the soil test results given by the district soil test lab, Wardha and the Village Resource Centre Waifad

The results from the district soil test lab shows the other essential nutrients like calcium and magnesium to be available in normal levels in the soil samples (Table 2). But calcium carbonate (CaCO₃) percentage in the soils was found to be high in all the 5 samples. This has implications on available phosphorous in the soil as phosphorous

¹⁵ Of this, the Village Resource Centre at Waifad, carried out soil tests for 45 samples during 2009 and the test results were taken from the Village Resource Centre Waifad, The remaining 5 soil tests were done as part of this study in March 2010, and the results were provided by the District Soil Test Lab Wardha. Microbial status analysis was carried out on these 5 samples at the Microbiology Lab at MSSRF Chennai in March 2010.

is fixed in an unavailable form¹⁶. This has adverse effect on the soils of Lonsawali *panchayat* which are low in available phosphorous.

1 unonayar							
Nutrient	Low	Normal	High	Total			
Calcium	Nil	5	Nil	5			
Magenesium	NII	5	Nil	5			
Calcium carbonate	Nil	Nil	5	5			

 Table 2 Status of Essential Nutrients other than NPK in Soils of Lonsawali

 Panchavat

Source: Based on soil test results given by the District Soil Test lab, Wardha

Microbial status analysis¹⁷ was carried out on 5 representative soil samples from Lonsawali *panchayat*¹⁸. The samples were analyzed for their total microbial biomass¹⁹. The overall microbial population in the soil samples varied from 12-35 x 10^3 (which means there are 12-35 colony forming units (CFU) of microbes when 1 gram soil is diluted to 10^3 times). This amount is less when compared to the range reported in organic matter rich fertile soils. The population in organic matter rich fertile soils would be more than 12-35 x 10^6 to 10^7 (that is organic matter rich soil would have more than 12-35 colony forming units when 1 gram is diluted to 10^6 times). The diversity of the different microbial species like *Pseudomonas, Bacillus*, phosphate, zinc, and urea solubilisers was also found to be very low (Table 3).

Pseudomonas sp. is generally referred to as plant growth promoting *rhizobacteria* (PGPR's). This group of bacteria promote plant growth by different mechanism and

¹⁶ The calcium (Ca2⁺) of CaCo3 reacts with the available phosphate ions (Po4³⁻) in the soil and fixes them as Ca3(Po4)2 (calcium phosphate), which is an unavailable form of phosphorous.

¹⁷ Inferences on the microbial status of the soils of Lonsawali *panchayat* is based on the inputs received from the Microbiology lab at MSSRF.

¹⁸ The 5 soil samples collected were representative of the different soil textures in the *panchayat* namely medium and light black soil and red soil.

¹⁹ Soil microbial status was analysed by serial dilution method. **First stage dilution**: 1 gram of the respective soil sample was taken and diluted in 10 ml of sterile distilled water. This solution was vortexed for 10 minutes. (A vortex machine helps to break down the clodes of the soil particles and enable the soil microbes to come into the solution. The procedure is called vortexing.). **Second stage dilution**: 1 ml from the first dilution was transferred to the second tube with 9 ml of sterile distilled water and mixed well. **Third stage dilution**: 1 ml from the second dilution was again transferred to the third tube with 9 ml of sterile distilled water, mixed well and allowed to settle down for few minutes. 100µl of solution from the third dilution was spread plated on the respective medium and incubated for 48 hrs at room temperature and the number of colonies which appeared in each plate was counted which gives the colony forming unit (CFU) in one gram of soil diluted to 10^3 times and this represents the microbial population of that particular soil.

protect plants against biotic and abitotic stress. The CFU of *Pseudomonas* population was found to be extremely low in the soils of Lonsawali *panchayat*.

Sl. No.	Total biomass (Nutrient medium)	King's medium (Pseudomonas spp)	Pikovskiya's medium (Phopho- solubilizer)	Azospirillum medium (Azospirillum spp.)	Zn solubilizing bacteria	Urea Medium (solubilizing bacteria)	Bacillus spp.
1.	20	1	-	-	-	-	1
2.	12	-	-	-	-	-	1
3.	12	1	1	-	-	-	-
4.	28	4	2	-	2	-	1
5.	35	1	3	1	-	-	1

Table 3 Soil Microbial Test Results, Lonsawali Panchayat (number of CFU at 10³ dilution)

Source: Soil microbial results provided by Microbiology lab at MSSRF

Azospirillum are associative symbiotic nitrogen fixing bacteria, which fixes the free atmospheric nitrogen in the soil and makes it available to the plant. The *Azospirrilum* spp. if present in appropriate numbers, fixes around 20-40kg of nitrogen/hec/season. In the soil samples of Lonsawali, the population of *Azospirrilum* is totally absent except in sample 5, which is reflective of the low available nitrogen in the soil.

The phosphate solublising bacteria increases phosphorous uptake by the plant and increases crop yield. The phosphate solublising bacteria secrete organic acids that helps in the dissolution of the bound phosphorous in the soil. Strains from the genera *Pseudomonas, Bacillus* and *Rhizobium* are among the most efficient phosphate solubilizers. Soil samples of Lonsawali have very low level of phosphate solubilisers. This is of significance in the event of high calcium carbonate content and the associated phosphorous fixation problems in the soils of Lonsawali *panchayat*.

Bacillus sp. is also plant growth promoting bacteria and this group has the ability to tide over harsh environment. Even these bacteria which have high survivability in a wide range of soils are observed in very low numbers in the soils of Lonsawali *panchayat*. Zinc solubilising and urease producing bacteria are totally absent in the soil samples of the *panchayat*.

To sum up, microbial population plays an inevitable role in soil biological health, nutrient cycling, and nutrient availability to plants. Adequate availability of the microbial species is essential for good microbial activity. In Lonsawali *panchayat*, since the microbial population load is very low, augmentation of its population is to

be achieved through external application of bio-fertilisers coupled with organic matter application.

1.2.2 Irrigation

1.2.2a. Minor irrigation tanks: Lonsawali *panchayat* has two minor irrigation tanks Jugadhari and Shekapur. But the farmers of Lonsawali *panchayat* have not had any irrigation benefits from the two minor irrigation tanks in the *panchayat* till date. The tank is said to have never once reached its full tank level (FTL) after its completion. The reasons for non-filling of tanks are being attributed to low rainfall and also sub surface run off from the tank. The sub surface run-off could possibly be due to some technical flaw in the 'cut-off trench' (COT) or 'hearting' the two basic structures in any dam that is responsible for the function of retention of water in the tanks. An understanding of the physical structure of the tank would help better understand the link between the technical flaw and water retention in the tanks²⁰.

²⁰ The section on the tank structures and the issues with the physical structure of the tank and its maintenance are based on discussion with officials of the ZP-Minor Irrigation Division (March 2010)

Dam Structures (Fig 1)

Casing: This is the outer covering of the earthen dam. This is usually made of red soil (murmatti). This part of the dam structure allows water to flow freely and does not help in water retention.

Hearting: This is the layer beneath the casing. This is made up of black cotton soil. This part of the dam structure helps in water retention.

Cut off trench (COT): A cut off trench is a structure usually taken beyond the central line of the tank in the upstream area. The thumb rule followed in deciding the depth of the cut-off trench is, depth of cut-off trench is equal to FTL - GL (ground level). It is also subjective to the type of strata available. The cut off trench should ideally rest on hard rock. But if the hard rock is available much beyond the FTL-GL level, it is advised to restrict the cut off trench to the FTL-GL level. The cut off trench should be filled with black cotton soil and the bottom layer of the cut off trench should be filled with black cotton soil, properly puddled, and compacted. If this procedure is not properly done, and the cut off trench is filled with red soil or other types of soils which does not help in water retention, water will seep out of the tank through the COT. The texture of the black soil that is used to fill the hearting and the cut-off trench determines the water retention capacity of these two structures. Heavy black soils help in better water retention in the tanks than medium/light black cotton soils. Usually soils within a radius of 2 to 2.5 km of the site of the tank are used to fill the COT.

Issues with the tank structure that hinders water retention in MI tanks:

• The texture of the black soil that is used to fill the 'hearting' and the 'cut-off trench' determines the water retention capacity of these two structures. The black cotton soils of Lonsawali village *Panchayat* are of medium and medium-light textures, which have average to poor water retaining capacity. If this soil had been used in either the cut-off trench or the hearting, they wouldn't be as effective in ensuring water retention in the tanks. Since it is stipulated that generally soils within a radius of 2 to 2.5 km of the site of the tank are used to fill the tank, it can be assumed that the soils used for filling

Issues with maintenance of MI tanks:

- The ownership, overall maintenance and management of Jugadhari and Shekapur tanks rests with Wardha Subdivision of the ZP-Minor Irrigation division. It is said that the funds allotted are not adequate for proper maintenance of tanks²¹.
- Till date (as of August 2010), no society or water users association has been formed of the originally identified beneficiaries for taking up maintenance work of the supply channels of both these minor irrigation tanks as has been stipulated by the MMSIF Act 2005. In the absence of any kind of irrigation benefits from the minor irrigation tanks, the beneficiaries do not consider it worthwhile forming a society to maintain the supply channels of the minor irrigation tanks.

1.2.2b. Issues with KT Weir- The Artificial Recharge Structures

- The issue with KT weir, the artificial recharge structures over Badadi river in Lonsawali is that the gates are not being placed after the monsoon recedes, and hence it doesn't serve the purpose of ground water recharge.
- The reason given for not placing the shutters of the KT weir is that once the gate is placed, the water level in the Badadi river rises, making it difficult for farmers who have their fields on the other side of the KT weir to commute to their fields.
- While the farmers who own land on the other side of the KT weir demand that the District administration provide a foot bridge across the Badadi River near the KT weir to facilitate commuting; the ZP-Minor Irrigation Division which is in charge of maintenance and management of KT weirs states that it is highly economically unfeasible to built a foot bridge across the Badadi just for the sake of 3 or 4 farmers and that the farmers should explore other alternatives routes to reach their fields.
- The other reason gave for non placement of shutters across the KT weir is the non-agreement on the part of the beneficiaries of the KT weir with regard to

²¹ Interview with officials at the ZP Minor Irrigation Division, Wardha, March 2010

sharing of labour charges required for placing and removing the shutters/pins in the KT weir.

1.2.3. Watershed

Though the NABARD holistic watershed implemented in the Lonsawali *Panchayat* followed the ridge to valley scheme of soil and water conservation, the majority of the work carried out under the watershed in the *Panchayat* pertains to ridge treatments and drainage line treatments (Map 3)

Map 3 Watershed Map of Lonsawali Panchayat

Note: Watershed map generated using GPS points taken at Lonsawali during March 2010 *Source:* Cadastral Maps from Department of Land Survey and Land Records, Wardha

The treatments done on the ridge/upper reach is continuous contour trench. According to the implementing agency in charge of the watershed in Lonsawali *panchayat*, the upper reach of the watershed have been fully targeted and the target covered 100 per cent. The treatments done on the drainage line are gully plugs, loose boulder structure, and gabion structures. The drainage line treatments have also been carried out according to plan target. The work planned in the lower reaches is farm bunds and repair of farm bunds. Treatments like contour bunds and graded bunds which are effective soil and water conservation treatments in the lower reaches of a watershed

were not planned in any of the fields. The farm bunds which were taken up on 1375 hectares of the cultivable area, about 92.9 per cent of the total cultivable area of the *panchayat*, were not taken according to the specification proposed in the action plan for the watershed. According to the implementing NGO, though they have covered the target given in the action plan on farm bunds, they have not been able to stick to the dimension specified in the action plan for farm bunds. The dimension specified for farm bunds in the action plan was 60-65 cm height and 1.5 metre breadth. The length to depend on the length of farmer's field. The size of the farm bunds in about 50 per cent of the fields were not according to specification. The size of the farm bunds taken were only 80 per cent of size proposed in the plan. The reason given for deviating from the dimensions specified in the action plan was the farmers' unwillingness to take up farm bunds in their fields citing difficulty/interference in the cultural operations. The reason given for the complete absence of contour and graded bunds was also the farmers' unwillingness to adopt this in their fields. Another structure conspicuously absent in the watershed was the farm ponds in the lower reaches. The farm ponds serve as effective water harvesting structures and also help in recharging of ground water.

1.2.4. Cultivation Practice²²:

1.2.4a. Issues in cultivation practice in cotton:

The seed rate and spacing adopted in cotton is not as per recommendation given in the package of practice for cotton²³ (ICAR 2006). The seed rate used is more than the recommended seed rate of 800 g/acre and the spacing adopted is more than the recommended spacing of 2 ft x 2 ft in medium black cotton soil. The amount of fertiliser applied is less than the recommended dose of 32:16:16 kg/acre of NPK (Table 4a.). The use of fungicides like Bavistin and Dithane M-45 against a physiological disease like red leaf curl leaves a lot to be said about the effectiveness of the extension system in the village. All these factors contribute towards the yield of

²² The issues discussed under cultivation practice are based on the findings of our earlier study in Lonsawali (MSSRF 2010), farmers field survey undertaken by MSSRF-Village Resource Centre Waifad (2006-07), focus group discussion with farmers in Lonsawali (March 2010) and interview with the Village Agricultural Officer, Lonsawali (March 2010). ²³ The package of practice for cotton is given in the Handbook of Agriculture published by ICAR.

cotton in Lonsawali being much less than the potential yield of 10-15 quintals/ acre in black cotton soil.

Respondents	Size of Operational Holding (in acre)	Name of Fertiliser Applied	Quantity of Fe	ertiliser Applied (in]	kg/acre)
			Nitrogen	Phosphorous	Potassium
1.	2.5	18:18:10 and Urea	32 (100)	9 (56)	5 (31)
2.	4.5	Diammonium phosphate	9 (28)	10 (63)	Nil
3.	6	18:18:10 and Urea	16.36 (51)	9 (56)	5 (31)
4.	9	12:32:16 and Urea	35 (109)	32 (200)	16 (100)
5.	17	12:32:16 and Magnesium sulphate	34 (106)	29 (181)	21 (131)
6.	18	18:18:10	54 (169)	54 (338)	30 (188)

Table 4a Average Per Acre Fertiliser Application by Cotton Farmers Across Size Classes in Lonsawali

Notes: The recommended dose of fertiliser nitrogen, phosphorous, and potassium for rainfed cotton is 32:16:16 kg/acre Figures in parentheses give the index with respect to recommended dosage equating recommended dosage of nitrogen, phosphorous, and potassium to 100.

Source: MSSRF 2010

1.2.4b. Issues in cultivation practice in soybean in Lonsawali:

Though seed treatment with thiram is a recommended practice in soybean most of the farmers seem to be unaware of the need for seed treatment in soybean. A survey undertaken by MSSRF in Lonsawali during the year 2008 shows that only 13/200 farmers surveyed had taken up seed treatment²⁴. The lack of seed treatment is the major cause of root related diseases of soybean. It is recommended to maintain an optimum plant population of 1,40,000 plants per acre in soybean, while in Lonsawali, the farmers maintain only around 1,00,000 plants per acre. This could be attributed to the low germination percentage of the seeds. The farmers do not take up any germination tests before sowing. The fertilizer applied is found to be very less compared to the recommended dosage (Table 4b). In addition to this, sulphur which is one of the recommended nutrients in soybean was found to be invariably missing across the different size classes in Lonsawali. Sulphur is an essential nutrient in oilseed crops. Sulphur enhances the oil content in soyabean. The non-application of sulphur will result in poor oil content in the soyabean pods. All these factors could be contributing to the less than potential yield levels in soybean in Lonsawali.

²⁴ Data taken from the Village Resource Centre Waifad

Table 4b Average Per Acre Fertiliser Application by Soyabean Farmers Across Size Classes in

Loncowol	:
Lonsawa	1

Respondents	Size of Operational Holding (in acre)	Name of Fertiliser Applied	Quantity of	of Fertiliser A	Applied (in kg	g/acre)
			Nitrogen	Phosphor	Potassium	Sulphur
				ous		
1.	2.5	18:18:10 and	16.4	7.2 (90)	4 (25)	Nil
		Urea	(205)			
2.	3	18:18:10 and	5.94 (74)	5.94 (74)	3.3 (21)	Nil
		Urea				
3.	4.5	Diammonium	32 (400)	10 (125)	Nil	Nil
		phosphate				
		and urea				
4.	6	18:18:10	5.94 (74)	5.94 (74)	3.3 (21)	Nil
5.	9	Single super	Nil	8 (100)	Nil	5.5 (69)
		phosphate				
6.	18	12:32:16	6 (75)	16 (200)	8 (50)	Nil

Notes: The recommended dose of fertiliser nitrogen, phosphorous, potassium and sulphur for rainfed soybean is 8:8:16:8 kg/acre. Figures in parentheses give the index with respect to recommended dosage equating recommended dosage of nitrogen, phosphorous, and potassium and sulphur to 100 **Source:** MSSRF 2010

1.2.5. Agricultural Extension

The status of technology delivery in Lonsawali is found to be very poor as is reflected by the incorrect cultivation practices adopted by the farmers of Lonsawali panchayat. The survey conducted by the MSSRF during 2006-07 in Lonsawali, adds further credential to this statement. Not a single farmer surveyed indicated agricultural extension officers or anyone else from the scientific community as their source of guidance and information for agricultural related problems and issues. The cultivation practice followed in cotton and soybean, the major crops in Lonsawali are clear indicators of the lack of guidance or advice from the scientific community/extension officers in the village. In the case of cotton, the seed rate and spacing adopted is not as per recommendation. The less than optimum dose of fertiliser application, and the non application of one or the other major nutrient, the erroneous use of pesticides/fungicides against *laliya*, red leaf curl, which is a physiological disease etc are the other problems in cultivation practice in cotton in Lonsawali. In the other major crop, soybean, the complete absence of seed treatment of soybean before sowing, the less than optimum plant population maintained per acre, less than recommended dose of fertliser application, and as in cotton the absence of one or the other of the recommended nutrients are all indicators of the lack of proper

understanding of scientific cultivation practices on the part of the farmers.

In addition to this, the villagers in general were unaware of the different schemes under the Department of Agriculture. The low level of adoption in Lonsawali of the various schemes offered under the Department of Agriculture points to this. In the year 2009-10 there were around 116 schemes under the different wings in the Department of Agriculture. The status of some of the schemes that were active in Wardha Taluk Agricultural Office during 2009-10, are analysed with respect to their reach and adoption in Lonsawali *panchayat*.

Broad area of the scheme	Subsidy component and percentage subsidy	No of farmers in Lonsawali Panchayat who availed the scheme
Soil and water conservation	70 per cent subsidy was given to marginal farmers for taking up farm ponds	None
National Horticultural Mission	 100 per cent subsidy was given for promotion of orchards of oranges, mangoes, pomegranate, sapota, and gooseberries Shade nets were given on 50 per cent subsidy to establish floriculture and vegetable nurseries. Packhouse for storage of harvested material was also promoted on 50 per cent subsidy. 	None
National Food Security	• Sprinkler and drip irrigation system	4
	 Oil engines and electric motor pumps were given on 50 per cent subsidy 	None
Support for	50 per cent subsidy to buy machineries	3 farmers got spray pumps
Implements & Machinery	cum fertiliser drills, power spray pumps, and knapsack spray pumps	
Input subsidy	• Zinc sulphate, gypsum, ferrous sulphate, etc are being given on 50 per cent subsidy.	5 farmers got inputs on subsidy
	• Half litre of Endosulfan per farmer to control boll worm in cotton was allotted for all the farmers in the district	Around 10 litre of Endosulfan was supplied for 20 farmers in Lonsawali.

Table 5 Awareness and Access to Department of Agriculture Scheme in Lonsawali Panchayat

Source: Based on Wardha Taluk Agriculture Office records

Table 5 above brings out clearly the overall very poor level of awareness and access to the schemes of the Department of Agriculture among the farmers in Lonsawali

panchayat. This situation prevails in Lonsawali *panchayat* in spite of the Department of Agriculture's efforts in disseminating information about the schemes by displaying the scheme details and the target group on notice board in the respective village *panchayats.* But Lonsawali village *panchayat* did not have any display board announcing the schemes of the Department of Agriculture. The combination of factors like the absence of a display board, the inability of the agricultural officer to effectively pass on information in the absence of a permanent place to meet the villagers, and the absence of a contact farmer who resides in the village all results in the poor adoption of the schemes of the department.

The staffing pattern and the staff strength of the Wardha Taluk Agriculture Office as of March 2010 show the department to be grossly understaffed.

Position	Sanctioned	Filled	Vacant
Taluk Agricultural Officer	1	1	Nil
Mandal Agricultural Officers	2	1	1
Agricultural Supervisors	2	1	1
Agricultural Assistants	12	6	6
Tracer	1	1	Nil
Total	18	10	8

 Table 6 Wardha Taluk Agriculture Office – Staff Strength (as of March 2010)

Source: Data collected from Taluk Agricultural Office, Wardha Taluk

As of March 2010, only 50 per cent of the posts of agricultural assistants have been filled up at Wardha taluk (Table 6). The agricultural assistants are the field level workers in the Department of Agriculture. Wardha taluk has approximately around 130 villages including some big hamlets²⁵. Even assuming full strength of agricultural assistants at taluk level, on an average one agricultural assistant would be in charge of 10-11 villages. Assuming an average of 250 farm families per village, each Agricultural Assistant would be in charge of around 2500 to 2750 farm families. In a day, on an average, an agricultural assistant can meet up to a maximum of 5 farm families. The agricultural assistant responsible for Lonsawali is also responsible for another 5 villages in Wardha taluk. In addition to this, as of March 2010, he had additional charge of 4 other villages. So in total he had 10 villages under his charge.

 $^{^{25}}$ An approximation arrived at based on the taluk level village boundary map for Wardha taluk given in the Atlas published by Department of Soil Conservation and Watershed Management, Pune – Maharashtra.

The villages are also widespread making them quite inaccessible. The agricultural assistants are not provided with any mode of transport, and they are advised to use bicycle by the Department. They are given a flat/permanent transport allowance of Rs.1250 per month. The agricultural assistants unlike the *panchayat* secretary or the village revenue officer do not have a permanent office/place at the village where people could access him on the day he visits the village. This and the absence of a peon at the village level make it difficult for the agricultural assistant to mobilize the farmers on the day of his visit to the village. The contact farmers the agricultural assistants have in the village are progressive farmers. They do not actively participate in the extension activity and hence fail to bring in the intended multiplier effect. It is ironical that the contact farmer the department has in Lonsawali does not even live in the village!

The agricultural assistants are responsible for agricultural extension, soil and water conservation, and other activities of the department at the field level, in addition to ensuring delivery of the different schemes of the department. This leads to overburdening of staff at the field level which leaves no time for effective extension activity at the field level.

1.2.6. Barren and Fallow Land in Lonsawali Panchayat:

The total barren land and fallow land (inclusive of current fallows) in the village *panchayat* during the year 2009-10 is 427.14 ha and this accounts for 20.46 per cent of the total geographical area of the village *panchayat*²⁶. This is much higher when compared with the total barren land and fallow land (inclusive for current fallows) for Wardha district during the year 2005-06. During 2005-06, the total barren land and fallow land (inclusive of current fallow) in the district was 15.04 per cent of the total geographical area of the district. Though several reasons like poor quality of the soil close to the foot hills and wild animal attack were cited as reasons for land being left fallow during the focus group discussion; the problem of existence of high percentage of barren and fallow land is a researchable question requiring an elaborate and intensive study of the factors underlying the phenomena.

²⁶ Based on land record details got from the village revenue officer, Lonsawali & Dorli

1.2.7. Wild Life Menace

Crop loss due to wild life menace is a regular feature especially in the fields of those farmers who own land close to the foot of the hills. The compensation got for crop damage/loss due to wild animal attack is very minimal compared to the effort and money spent on raising the crops. Hence many of the farmers who own land near the foot hills choose to leave their land barren than cultivate and lose it to wild animal attack. The Department of Forests pays a minimal compensation paid in the event of crop damages, cattle loss/injury and human injury/loss. The compensation paid in the event of injury to humans is in the range of Rs.5000 for minimal injury to Rs.50,000 for major injuries. The compensation paid on loss of human life due to wild animal attack is Rs.2 lakhs. The maximum compensation paid for any injury or death of cattle due to wild animal attack is Rs.7,500. The compensation for crop damages ranges from Rs.2000 to Rs.5000 per hectare. The amount to be paid as compensation depends on the extent of crop damage.

Added to this, the procedure for claiming the compensation is also said to be very cumbersome and time consuming. The farmer should complain within 3 days of the occurrence of damage with his farm record, FMB record, and a supporting proof like a photograph of the attacked field. A team of officials consisting of consulting forest officer, the gram sevak, police patil, forest guard, and village revenue officer, surveys the reported area ascertain the severity of attack, and fix the level of compensation to be paid. This report is cross checked by the assistant conservator of forest and they put up a note sheet containing their recommendation. The note sheet has to get the approval of the district conservator of forest. The district conservator of forests then gives the order for release of compensation money in the name of the farmer. Owing to the low compensation being paid, and the cumbersome procedure of claiming it, most of the cases of crop damage due to wild life attack remain unreported in Lonsawali *panchayat*.

1.3. Action Plan for Sustainable Agricultural Development in Lonsawali Panchayat

The action plan details major issues in the sphere of agriculture and suggests remedial measures. Further identification of agencies capable of implementing the remedial measures is also attempted. The schemes listed and the agencies identified are on the basis of extensive exploration of the respective department websites. To the extent possible, physical quantification of the individual remedial measures have been attempted.

Item		Issue		Remedial Measures		Action Plan		Agencies Concerned
Soil	•	Low to medium	•	Create awareness about the need for undertaking soil	•	Carry out soil tests	•	Department of Agriculture (awareness
Soil health	•	Low to medium organic carbon content, (which is an indicator of available nitrogen), Low level of available phosphorous Medium to high level of available potash Low to normal	•	Create awareness about the need for undertaking soil tests Soil testing to be done annually in every individual field. Have one soil sample per 5 acre of land for soil testing Supply of soil health card to every individual farmers to help track the dynamics of soil health and help in effective soil health management Apply organic matter ²⁷ (farm yard manure, green manure, bio-residues/crop residues etc) to increase the nutrient responsiveness of the soil. This will also help improve soil properties like soil texture, soil water holding capacity, and the soil organic carbon content. The practice that has scope	•	Carry out soil tests annually Supply soil health card Promote organic matter application	•	Department of Agriculture (awareness about soil test, soil test, and soil health card, subsidy for growing green manure crops) NGOs working in the field of sustainable agriculture (awareness about soil test, soil health card, the need for raising green manure crops) KVKs (awareness about soil test, soil health card) Soil test labs – public/co- operative/private (soil tests & soil health cards)
		micronutrients.		for promotion in the <i>panchayat</i> is the application of farm yard manure as traditionally they have a				
				practice of storing dung				

^{• &}lt;sup>27</sup> It is recommended to apply on an average 7.5 tons of farm yard manure (FYM)/hectare per annum, the total requirement of FYM for the total cultivable area of 1477 hectares would be roughly 11,078 tons/annum.

Item	Issue	Remedial Measures	Action Plan	Agencies Concerned
Soil health	• Low overall	• Promote application of bio fertilizers for augmenting	• Bio	• Regional Biofertiliser Development
	microbial	the beneficial microbial mass in the soil and thus	fertiliser	Centre, Nagpur - (to supply strains of
	population load	increase the microbial activity resulting in increased	application	microbes for bio fertiliser production,
		availability of the nutrients in the soil	• Decentralise	and to help in quality control of bio-
	• Low	• Bio fertilisers need to be applied at the rate of 1	d production of	fertilisers)
	diversity of	kg/acre/crop season. If the total cultivable area of the	biofertilisers	• District Rural Development Agency
	the different	village would be brought under cultivation both the		(DRDA) (to promote bio-fertiliser units
	microbial	seasons-(kharif& rabi), the total amount of bio		under Swarna Jayanthi Swarozgar
	species	fertilisers required would be 3693 kg that is 4 tons of		Yojana)
		bio fertiliser per annum approximately.		• Mahila kisan samitis promoted by
	• Soil test	In order to promote the utilization of bio-fertilisers at the		MSSRF to run bio fertiliser units.
	based	local area, a decentralized production facility could be		
	nutrient	established at the Panchayat level with a focus to		
	management	promoting bio-fertilisers based on efficient local strains.		
	practices are	Establish bio-fertiliser unit with a production capacity of		
	not followed	minimum of 5 tons per annum at Lonsawali Panchayat.		
		This could be promoted as an enterprise under the		
		Swarnajayanthi Swarozgar Yojana of DRDA and taken up		
		by SHGs promoted by DRDA and also through mahila		
		kisan samitis promoted by MSSRF ²⁸		

²⁸ Budget for setting up a bio fertiliser unit given in annexure 2

Item	Issue	Remedial Measures	Action Plan	Agency Concerned
Irrigation	• The faultiness	• Another cut-off trench (COT) in the minor	• Take cut-off-trench	• Zilla parishad Minor irrigation
	of the cut-off	irrigation tanks to be taken	• Close the outlet sluice of	department - (to take another
	trench that	• Convert the minor irrigation tanks to percolation	minor irrigation tanks in	COT after working out the
	prevents water	tanks by closing the outlet sluices	the panchayat	techno-economic feasibility of
	retention in the	• Promote farm ponds as recharge structures as	• Promote farm ponds	taking another COT in the tank
	Shekapur and	well as for soil and water conservation. It is	• Better manage KT weir	• Irrigation component under
	Jugadhari	ideal to have one farm pond of 30x30x3 mts per		Bharath Nirman Programme
	minor irrigation	5 ha plot.		could be sourced into for taking
	tanks	• The KT weir-the artificial recharge structure in		up another COT.
		the village across the Badadi river to be better		• ZP minor irrigation department
		managed. The shutters should be placed and		to convert the MI tanks into
		removed in synchronisation with the stoppage		percolation tanks by closing the
		and beginning of the monsoon.		outlet sluice plugs to help retain
				water in the tanks during
				monsoon, which will improve
				ground water recharge

Item	Issue	Remedial Measures		Action Plan		Agencies Concerned
Irrigation	• Absence of a water	• The farmers having land in the command area	•	Form water users	٠	Department of Agriculture
continued	users association to	of Jugadhari and Shekapur tanks to form		association for the tanks		(Source into their watershed
	maintain the tanks or	Water Users Association (WUA). This can		in the panchayat		programmes for farm ponds)
	look into the issues	serve as a forum for the farmers in the tank	•	Have better institutional	•	DRDA (Source into their
	related to the tank	command to raise their issues with the		mechanism to manage the		watershed programs for farm
	• Non-placement of	concerned officials of the ZP Minor Irrigation		KT weir		ponds)
	shutters over the KT	Division			•	The village community to create
	weir after the	• The farmers having land in the KT weir				institutions like water users
	monsoon recedes	command to have a more effective community				association(WUA) for Shekapur
	• Absence of an	management system in place				and Jugadhari for better
	effective community					management of tanks (like
	management system					demanding for another COT to
	of the KT weir					be taken, or for the sluice plug to
	leading to					be closed)
	ineffectiveness of					
	the system as a					
	recharge structure					

Item		Issue		Remedial Measure		Action Plan	Agency Concerned			
Watershed	•	Not enough	٠	The work done in the upper reaches to be	•	Take up farm	Нε	arness	the	watershed
(Soil & water		watershed		complemented with conservation measures like farm		bunds and contour	pr	ogrammes in	mplem	ented through
conservation)		treatment work in		bunds and contour bunds in the lower reaches to		bunds in the	•	Departme	nt of A	griculture
		the lower reaches		fully harness the benefits of the watershed		individual fields	•	DRDA		
	٠	Limited coverage		treatments.	•	Awareness	•	NABARD)	
		of the dry land	•	Create awareness about the necessity of having		creation on	•	The wate	rshed	implementing
		horticulture, only		watershed treatments like contour and farm bunds in		contour bunding		agencies	to sou	arce into the
		10 per cent of the		the cultivable area	•	Promotion of dry		National		Horticultural
		total fallow lands	•	Dry land horticulture to be promoted on fallow lands		land horticulture		Mission	for p	romotion of
		brought under		in the Panchayat				dryland ho	orticult	ure and nano-
		this.	•	Nano-orchards of 0.2 acres each can also be				orchards		
	٠	Lack of awareness		promoted on individual farmer's field						
		about the								
		importance of								
		having farm bunds								
		and contour bunds								
		in the individual								
		farmers field								

Item		Issue		Remedial Measures		Action Plan		Agency Concerned
Cultivation	•	Incorrect seed	•	Conduct training camps on cultivation practices in the	•	Conduct training camps -	•	Department of
practices		rate and		villages - one pre-kharif and one-pre rabi. Instead of having		one pre-kharif and one-pre		Agriculture (training
		spacing		mandals, which consists of 40-45 villages, as the unit for		rabi		camps,
	•	Lack of		conducting training camps, the department should ensure one	•	Make 4-5 contiguous		demonstrations, and
		knowledge on		pre-kharif/pre-rabi training camp per 4-5 contiguous villages.		village as the unit of		subsidised supply of
		the necessity of		This would ensure maximum reach of the training and		training instead of the		inputs)
		seed treatment		demonstrations conducted by the Department.		current mandals		
	•	Imbalanced and	•	Create awareness and provide demonstrations/training on seed	•	Provide training and	•	NGOs working in the
		suboptimal		treatment in soyabean - one demonstration pre-kharif, the		demonstration on		field of sustainable
		fertiliser		sowing season of soybean. Seed treatment with fungicides like	0	Seed treatment		agriculture
		application		thiram helps to prevent disease attack on the roots. Treating the	0	Seed germination test		(orientation, training
	•	Incorrect		seeds with biofertiliser like rhizobium (leguminous crop seeds),	0	Integrated nutrient		camps, and
		pesticide usage		helps in adequate nodulation of roots which help in better		management		demonstrations)
				nitrogen fixing. Non-leguminous crop seeds can be treated with	0	Integrated pest		
				Azotobacter and Azospirillium to get healthier plants ²⁹ .		management	•	KVKs (orientation,
			•	Give orientation on the need for conducting germination tests	0	Post harvest handling of		training camps and
				before sowing to ascertain the germination potential of the seed		produce		demonstrations)
				lot				

²⁹ Bioferiliser requirement for the *panchayat* has been worked out in the next section on soil health

Item		Issue	Remedial Measures		Action Plan		Agency Co	ncerned	
Agricultural	٠	Poor status of technology	To ensure better awareness and access to	•	Prepare entitlement	•	Department of	of Agricultu	ire
Extension		delivery in Lonsawali	the different schemes of the Department		card of all the		(awareness	creation	&
		panchayat	of Agriculture:		schemes in the		ensuring	access	to
	•	Lack of awareness and	• Entitlement card listing all the		concerned		entitlements)		
		access to the different	agricultural schemes, the target groups		departments	•	NGOs	(informati	on
		schemes of the	and process of accessing them could be	•	Display entitlement		dissemination	, awarene	ess
		Department of	distributed to the individual households.		card in common		creation, an	d facilitati	ng
		Agriculture	• Display the details of the entitlement		places		access to entit	element)	
	•	Poor staff strength and	cards on notice boards where farmers	•	Information	•	Local	Administrati	on
		vacancies in the staff	frequent like the PDS shop, the		dissemination		(awareness	creation a	nd
		position in the Wardha	provision stores, and the local temple.		through public		ensuring	access	to
		Taluk Agriculture Office,	• The public address system in the		address system and		entitlements)		
		leading to high field level	panchayat could be used to broadcast		the VKC				
		extension officer farmer	details of the schemes						
		ratio	• The Village Knowledge Centre (VKC)						
			in Lonsawali could be used to						
			disseminate information on the various						
			schemes of the Department						

Item		Issue	Remedial Measures		Action Plan		Agency Concerned
Agrl	•	Absence of a	To ensure effective functioning of the extension machinery in	•	Increase the total number of	Go	overnment of Maharashtra to
Extn		competent	the Department of Agriculture:		field level staff in Wardha taluk	ma	ake policy level changes:
		contact	• There should be a substantial increase in the field level staff		agriculture office	То	restructure the Department of
		farmer at the	of the Department of Agriculture by recruitment for existing			Ag	griculture in lieu with the pre-
		village	positions and creation of additional positions ³⁰	•	Provision of adequate	sin	igle window system
			• The Permanent Travel Allowance should be sufficient to take		permanent travel allowance of	•	To increase the total number of
			care of the required number of trips by the Agricultural		field level staff		sanctioned post in the
			Assistants for effective technology transfer to the farmers				Department of Agriculture in
			• The Department should be revamped in such a way as to	•	Revamp the Department of		the districts of Maharashtra
			realise the full benefit of the restructuring of the Department		Agriculture to realise the	•	Provisioning of adequate
			into the Single Window System. There should be adequate		benefits of single window		permanent travel allowance
			staff with the required skill sets to carry out extension activity		system		
			and soil and water conservation work at the field level making				
			the delivery of these activities more effective.				

³⁰ Assuming a ratio of 1000 farm families or approximately 4 villages per Agricultural Assistant as ideal, the approximate number of Agricultural Assistants to be sanctioned at Wardha Taluk is about 33 which is about 175 per cent more than the currently sanctioned posts at Wardha Taluk

Item	Issue	Remedial Measures	Action Plan	Agency Concerned
Agricultural	• Lack of community	• Establish a community storage structure •	• Establish community	• Department of
Marketing	storage space for crop	at the panchayat level. This would help	storage structures	Agriculture (pack
	produce	the farmers to store the grain type crops		house schemes to
	• Difficulty in knowing	like soybean, wheat, red gram, and bengal		construct
	the daily market price	gram and prevent distress sale of these		community/individual
	and the associated	produce.		storage structures)
	difficulty in taking	• The daily market price could be displayed		• Local Administration
	informed decisions	in the <i>panchayat</i> office or the VKC, so	• Have a display board	(have a display board
	regarding the time and	that the farmers who sell their produce to	at the panchayat to	for the daily market
	price of sale of their	private markets outside the village have	display daily market	price)
	produce	prior information about the prevailing	price	• NGOs (access and
		price level.		provide the daily
		• This will help them decide the		market price through
		best price and time at which they		the knowledge network
		can sell the produce.		connectivity)

Item		Issue		Remedial Measures		Action Plan	Agency Concerned		
Weather	•	Untimely rains and	•	Localized weather monitoring is very much	•	Establish	•	Local Administration	
variability		fluctuations in the weather		essential for effective planning of weather		village level		(to allot revenue land	
adaptation		patterns gives rise to new		based agricultural activities at the village		mini agro-met		for agro-met	
		pest and disease		level to meet the weather variability's		observatory		observatory)	
	•	Vagaries in weather results	•	Establishing village level mini agro-met			•	NGOs (to help	
		in fluctuations in the		observatory (Type c^{31}) will help to develop				establish the agro-met	
		weather based agricultural		weather based thumb rules for decisions in				observatory, train the	
		activities like sowing,		farm operations. Type c agro-met				cadre of weather risk	
		fertiliser application etc and		observatory can be established on 24 square				managers)	
		results in a strain on labour		metre of land ³² .			•	Department of	
		and draught power	•	Village level mini agro-met observatory will				Agriculture (to	
		available for all the cultural		also help in developing a cadre of Climate				provide monetary	
		practices from land		Risk Reduction Managers				support for setting up	
		preparation to harvesting.						the observatory)	

³¹ Type-c agro-met observatory helps measure relative humidity, temperature, quantity of rainfall and wind velocity. The instruments required are Stevenson screen, dry bulb thermometer, wet bulb thermometer, maximum & minimum thermometer, rain gauge, grass minimum thermometer, and cup anemometer
³² Budget for setting up a village level mini-agromet observatory is given in annexure 3

Item		Issue		Remedial Measures		Action Plan		Agency Concerned
Wild life	•	Low level of	•	To make the process of ascertaining	•	Include panchayat	Go	overnment of Maharashtra
menace		compensation paid in the		compensation for damage due to wildlife		president/member	&	GoI to effect policy level
		event of		menace more acceptable to the village		in the team	ch	anges to:
		crop/livestock/human loss		community, steps should be taken to include		ascertaining crop	•	Raise the level of
		due to wild life attack		the panchayat president/panchayat samiti		damage and		compensation
	•	The cumbersome nature		member in the team which ascertains the crop		compensation	•	Speed-up the process of
		of claiming compensation		damage and compensation				compensation
	•	Absence of any	•	The compensation paid for	•	Increase the	•	Have a representative
		representative from the		crop/livestock/human life loss in the event of		compensation		from the <i>panchayat</i> in the
		panchayat in the		wild life attack is very minimal. The		amount paid in		committee which
		committee which		compensation amount need to be increased, and		the event of crop		ascertains the damage,
		ascertains the extent of		this should be at least equal to the sum assured		loss due to wild		and fixes the level of
		damage and fixes the		in the event of crop loss under the prevailing		animal attack		compensation
		level of compensation to		crop insurance schemes.				
		be given due to wild life						
		attack						

Section 2

Wardha District

2.1. Issues in Agriculture in Wardha District³³:

This section explores some of the limiting factors for agricultural productivity growth in Wardha district. This issues discussed pertains to changes in land use, cropping pattern, rainfall, soil health, status of soil and water conservation, extension etc that have a direct implication for agricultural growth in the district.

2.1.1. Land use, cropping pattern and crop production³⁴:

An analysis of the land-use pattern in Wardha district over the four-and-half decades since the 1960s indicates a reduction in net sown area in absolute terms over the decades. The net sown area which was around 4.02 lakh hectares and accounted for 63.9 per cent of the total geographical area (TGA) during the triennium centred around 1961-62 reduced to 3.65 lakh hectares (57.86 per cent of TGA) by triennium centred around 2004-05. The total fallow lands comprising of current and other fallows, which was 22,013 hectares during the triennium centred around 2004-05, an almost 4 times increase over 1961-62.

Traditionally though cotton has always been a major crop in the cropping pattern of the district, the production system of the district could be described as food grain based with total food grains constituting more than 50 per cent of the gross cropped area (GCA) till the mid-80s. Since mid-1980s soyabean has become an extremely important *kharif* crop in Wardha district, and the area under soybean has expanded by replacing cotton and sorghum (grown in *kharif*) and dry wheat³⁵ (grown in *rabi*) in Wardha district. By the year 2004-05, total foodgrains constituted 28.7 per cent of

³³ The sections on Land use, Cropping Pattern, and Crop production, Irrigation, and Structural Changes in the Department of Agriculture & Implications for Field Level Advisory/Activity are completely based on our earlier work in Wardha – MSSRF 2010 with the exception of the staff strength in the department of agriculture which is been updated.. Sections on Rainfall and Soil Characteristics partially draws from our earlier work.

³⁵ Dry *rabi* crop in Wardha district used to be grown in fields that were unirrigated and left fallow during the rainy season. Such fields would often be the ones that were prone to flooding and had the ability to retain moisture. With the introduction of soyabean, lands that were earlier reserved for dry *rabi* are getting cultivated in *kharif* season.

GCA, cotton 22.3 per cent of GCA, while soyabean occupied 44.7 per cent of GCA. This took the share of the total cash crops in the cropping system of the district to about 71 per cent, making the agricultural economy of the district a cash-crop economy.

Crop production in the district is characterised by a declining trend and high degree of instability in yield. Foodgrain production per capita per day in Wardha district declined from 532 g in 1961 to 369 g in 2001: a 31 percent decline over the forty-year period. Among the cash crops cotton production declined at the rate of 4 percent per annum over the years 1996-97 to 2004-05. Soyabean is the only crop that is registered an increase in its production, over the years 1991–92 to 2004–05. The crop registered a nine fold increase in its yield during this period.

A comparison of yield levels of cotton, soybean, and redgram in the district to that of the State and All India figures shows that yield levels of soyabean and redgram in Wardha district, in general, are equivalent to or higher than that of Maharashtra and All India. But cotton yield in Wardha district is lower than the country but higher than the state of Maharashtra (Table 7). The period 2001-02 to 2004-05 shows a decline in yield of red gram and soybean in Wardha district with soybean yield falling by 15 per cent over this period.

Crop	Area	1961-62	1971-72	1981-82	1991-92	2001-02	2004-05
Red Gram	Wardha Dist	1,379.46	870.72	1,065.03	690.45	1,121.67	1,086.00
	Maharashtra	697.89	414.49	564.07	450.99	667.50	665.00
	India	684.33	740.67	704.67	637.67	649.33	700.67
	Wardha						
Cotton	Dist.	54.20	56.95	100.03	149.71	169.00	211.33
	Maharashtra	91.61	64.01	93.11	104.41	129.00	184.33
	India	1,16.67	128.00	160.33	232.67	189.00	329.00
Soyabean	Wardha Dist.				810.45	1,243.67	1,056.33
	Maharashtra				878.29	1,182.00	1,018.17
	India				897.00	841.33	1,058.00

 Table 7 Yield of Major Crops, Wardha District (in kilogram per Hectare)
 Triennium

 Average Centred around the Year

Source: MSSRF 2010

Yield levels of crops in Wardha district is also characterised by high level of fluctuations. A comparison of the index of instability³⁶ measure at the district state and national level for the four major crops in the district namely, cotton, soybean, sorghum, and red gram indicate a high level of instability in yield for these crops in Wardha district (Table 8).

Table 8. Index of Instability in Yield of Crops, Wardha District, 1960-61 to 2005-06 (percentage)

	Wardha	Maharashtra	India
Soyabean	27	11	11
Cotton	18	16	6
Jowar	15	11	6
Redgram	11	10	7

Note: Calculations for soyabean is for a period 1987–88 to 2005–06 *Source:* MSSRF 2010

2.1.2. Rainfall and Soil Characteristics:

Wardha district receives an annual mean rainfall of 1041 mm. An analysis of the rainfall data of the district reveals a declining trend in the quantum of rainfall received and a reduction in the number of rainy days during the south west monsoon. The declining trend in the quantum of the south west monsoon has serious implication for the predominantly rainfed agriculture system of the district

Black soil is the predominant soil type in Wardha. This is further classified into light, medium, and heavy black soils. An analysis of the soil characteristics of Wardha district indicates that one-fifth of the soil is classified as light black soil, which is not very conducive for crop growth, while four-fifths is accounted for by heavy and medium black soils that have relatively better levels of productive potential. However, heavy and medium category soils have several inherent problems and deficiencies such as low level of availability of macro- and micronutrients; low microbial activity, problem of phosphorous fixation and so on.

The dominant physical limiting factors of the soils of Wardha district are its depth, texture, and high erodability. About 48.4 per cent of the total geographical area of the

³⁶ Instability in yield is measured as the average percentage deviation of actual value in each year around the three-year moving average value for that year.

district is covered by soils which have depth in the range of <10 to 50cm and are classified as extremely shallow to shallow soils. Soil depth is of significance to plant growth as it determines root development, available water holding capacity, and nutrient availability in the soils. The proliferation of roots is largely determined by soil depth. Soils with more than 100 cm depth are suitable for intensive agriculture. Only about 36.2 per cent of the TGA of the district has soils with more than 100 cm depth which are amenable for intensive cultivation.

Soil texture refers to the relative proportion of sand, silt, and clay in a soil mass. Soil texture determines the soil water condition and its availability to plants, availability and retention of plant nutrients, workability of soil, infiltration and drainage condition, and stability of the soil structure. Loamy textured soils especially the silty loams are the best suited for crop production. Silty loam soil is absent in Wardha district. Clay textural class covers 69.7 per cent of the TGA of the district. Clay soils have poor infiltration rate and poor workability. These are also soils which get easily flooded. About 28.7 per cent of the TGA is covered by soils which are sandy loam to clay loam. These are soils which have poor water holding and retentive capacity (*NBSSLUP 2005*).

The low water holding capacity of the soils, results in substantial extent of run-off of rain water. The run-off water is estimated to be 355 mm (3,550 cubic metre of rain water/ hectare/annum) especially during the south–west monsoon. The run-off results in loss of fertile top soil, leading to serious problems of soil erosion. Around 91.7 per cent of the TGA of the district have an expected soil loss which is much higher than the permissible limit of 10 tonnes per hectare per year. Of this, around 16.5 per cent of the TGA of the district is affected by severe erosion with expected erosion levels of 15-20 tonnes per hectare per year; and about 75.2 per cent of the TGA is affected by moderate erosion with expected erosion levels of 10-15 tonnes per hectare per year. A soil loss estimation done based on the different erosion classes for Wardha district given by NBSSLUP shows that after accounting for the maximum permissible limit of soil loss of 10 tonnes per hectare per year, the extent of soil loss in the district due to erosion is in the order of 19.6 lakh tonnes per annum (MSSRF 2010).

2.1.3. Soil and water conservation efforts:

According to land capability classification³⁷ of Wardha district, 90 per cent of the land falls under Classes II to IV. Among the classes suitable for cultivation, class I land is the most fertile land and extremely suitable for growing a wide variety of crops (Kolay AK 1993). Wardha district does not have any land that can be classified as class I land³⁸. About 50 percent of the cultivable land in the district falls under class II (Table 9). Although the available nutrients on Class II lands are poor, these are lands that can be regularly cultivated. But systematic efforts should be taken to maintain the productivity of the land by adopting special conservation practices like contour farming and other soil and water conservation measures. In the district, 18 per cent of the land falls in class III. These lands can be cultivated only by following intensive soil-conservation practices like terracing. Class III lands are those lands that are 'more severely affected by salinity and alkalinity and soil erosion than Class II lands. They have poor nutrient content and moisture-retention capacity'. Wardha district has 22 per cent of land under class IV. Class IV lands are advised to be brought under intensive cultivation only once in four years, and the remaining years it is to be left under grasses. The land capability classification and the soil characteristics described above clearly bring out the importance of soil and water conservation efforts in the district.

	Wardha District								
Land capability Class	Area	Percentage							
Class I	nil	nil							
Class II	229514	50							
Class III	81768	18							
Class IV	102344	22							
Class V	nil	nil							
Class VI	nil	nil							
Class VII	48166	10							
Class VIII	nil	nil							
Total geographical area	461792	100							

Table 9 Land Capability Classes – Wardha District

Source: Based on data provided by Soil Test Lab, Wardha

³⁷ Land capability classifications groups soils under different land capability classes, based on inherent soil characteristics as well as external land features and other environmental factors that determine the different uses to which the soils can be put (Kolay AK 1993). Land units that fall under a particular class of land capability classification would have similar relative degree of susceptibility to various factors that cause soil damage and decrease in productivity and similar potential for crop production. Land capability classification groups soils into VIII land capability classes. Soils suitable for cultivation are grouped under classes I to IV. ³⁸ Land capability classification for Wardha district given by the District soil test lab, Wardha.

Soil and water conservation activities are taken up under the comprehensive watershed programmes in the district since 1992. The watersheds of Wardha district falls in the Godavari basin. The total watershed area under the district is 4,09,105.12 hectares which accounts for 2/3rd of the geographical area of the district. There are about 40 watersheds in the district. Out of this 15 watersheds fall in the least priority category of watersheds³⁹. While in a relative sense, the case of Wardha district is far better compared to most other districts of Maharashtra, given the extent of soil loss due to erosion in the districts and the inherent poor quality of the soils of the district, soil and water conservation efforts remain a priority area for agricultural productivity improvement in the district.

Watershed activities in the district are carried out by the both the Government and private agencies. The government watersheds are implemented by District Rural Development Agency, Department of Agriculture, and the Ground Water Surveys and Development Agency. Of the total watershed area in the district, only 34.14 per cent of the area has been targeted by the different agencies under watershed activities till 2011. And of the total area targeted by the different agencies only 45.92 per cent have been covered as of July 2010 (Table 10).

³⁹ Watershed priority categories classifies watersheds into high, moderate, low, and least priority watersheds based on the weighted index of geomorphology, land use/land cover, and soil erodability of the region. The highest weighted index is given to given to unit indicative of high run-off, while lowest weightage index is given to the unit indicative of low run-off. The anticipated highest index is 18 and the lowest index is 3. The cut-off point 9 was taken for deciding priority watersheds. Watersheds with weighted index more than 9 are classified as priority watersheds, and watersheds with weighted index less than 9 are taken as least priority watersheds. The prioritized watersheds were then again classified into 4 groups, in which watersheds with index more than 10 have been classified as high priority watersheds. The watersheds with index ranging between 10 to 9.5 have been classified as low priority watersheds, while the watersheds with index less than cut-off value have been classified as low priority watersheds. (*http://waterconserve.maharashtra.gov.in*)

Agency	Duration	Taluks	Project	Area	%	Remarks
		covered	Target	covered	covered	
			(in	2010-07-	July	
			hectare	26(in ha)	2010	
NARAPD Nabard	Dhase I	Wardha Arvi	s)	12225	83.03	Longowali cluster is the
Holistic Watershed	2003-	Karanja &	3	15255	03.95	only one completed so far
Development	2010	Samudrapur				out of the 4 clusters
Programme						planned
(NHWDP)	Dhaga II	Amri Daali	14590 5	000.42	6.17	All alwatars in some sites
NADARD - NHWDF	r 11850-11	Hinghanghat	14380.3 6	900.42	0.17	building phase. In this
		Samudrapur	Ũ			stage, 10-15% of the total
						targeted area under the
						watershed will only be
Indo-German	2007-	Arvi	1456.83	394	27.04	Ongoing
Watershed	2011	11111	1100.00	571	27.01	ongoing
Development						
Project (IGWDP)						
DKDA – Total Harivali-II	2003-	Arvi Ashti	22481.7	6365	28.31	Ongoing Many of the
	2003	Seloo, Karanja	8	0505	20.51	projects under this had
						been sanctioned in the
						year 2007. These projects
						nave developed their full project design but are in
						the intermediate phase of
						implementation
IWDP	2002-	Ashti	3004.53	3000	99.84	Project is completed
Vidarbha Watershed	2011	Arvi	6200.07	4858.00	78 53	Project ongoing
Development	2003	Ashti	0200.07	4050.00	10.55	i roject ongoing
Mission (VWDM)						
Total DRDA			31686.3	14214	44.85	
Agricultural			σ			
Department						
VWDM	2005-		35356.5	35356	100	Completed
MECA Deviat	2011	Ami Vanania	6			In alconing store
(RIDF-XV)	2009-10	Arvi, Karanja, Seloo	1/250			In planning stage
IWMP	2010-	Arvi	18275			In planning stage
	2011	Ashti				
Total Ag Dant		Karanja	70001 5	25254	10.80	
Total Ag. Dept			70881.5 6	35350	49.88	
Geological Survey			4797.12			
Social Forestry			394			
Grand total under			139564.	64099.42	45.92	
all watersheds			68			

Table 10 Watershed Details of Ongoing Projects in Wardha district as on July 2010

Source: *Data/information collated from the respective agencies*

2.1.4 Soil health:

Soil fertility index⁴⁰ has been developed for macro nutrients like nitrogen, phosphorous, and potash at the district level by the District Soil Testing Lab based on soil sample analysis done during the period 2000-01 to 2007-08. Based on the range of fertility index for each of the nutrients, the soils are classified into low (0-1.5), medium (1.5-2.5), and high (>2.5) categories for availability of each of the nutrients. Micronutrient status of the soils at the district and taluk level was also studied. A total of 19380 samples were analysed for the district as a whole and the soil fertility index developed for the district based on the sample is presented in Table 11.

 Table 11. Soil Fertility Index – Wardha District (2000-01 to 2007-08) (No of samples under each

 category)

Soil nutrients	No. of samples	V. Low	Low	Medium	Med- High	High	V. High	Soil Fertility Index (SFI)
	analysed							
Organic								
carbon		1344	8407		1926	788	665	
content	19380	(10)	(46)	6250 (26)	(8)	(5)	(5)	1.36
Available		10450	8031	731	87	35	46	
Phosphorous	19380	(54)	(41)	(4)	(0.5)	(0.2)	(0.3)	0.76
Available		741	1140		3664	2948	7287	
Potash	19380	(4)	(6)	3600 (19)	(19)	(15)	(37)	2.44

Notes: Figures in parenthesis is the percentage to total number of samples *Source:* Based on data received from District Soil Testing Lab, Wardha

Organic carbon content is an indicator of available nitrogen in the soil. Out of the total 19380 samples analysed in the district 82 per cent of the soils have low organic carbon content and hence low available nitrogen and the remaining 18 per cent have medium high to very high range of organic carbon. The soil fertility index for all the three nutrients indicates medium level of availability of each of the nutrients.

The soils of Wardha district have very low level of available phosphorous. At the district level, 95 per cent of the samples reported very low to low available phosphorous. The soil fertility index for available phosphorous is also extremely low at 0.76 for Wardha district.

⁴⁰ Soil fertility index (SFI)is calculated by employing the following formula:

S.F.I = [{(No of samples under very low category x 0.5) + (No:of samples in low category x 1) +(No. of samples in medium category x 1.5) + (No. of samples in medium-high category x 2) +(No. of samples in high x 2.5) + (No. of samples in very high x 3) } / total number of samples]; where 0.5 is weight given to very low category, 1, 1.5, 2, 2.5 and 3 are weights given to low, medium, medium-high, high, and very high categories

The available potash level is on the higher side in the district. At the district level, 93 per cent of the samples reported medium to very high level of available potash. The soil fertility index for available potash for the district is above 2, which indicates a medium level of availability of the nutrient in the soil.

Over the period 2000-01 to 2007-08, a total of 1965 samples were analysed for micronutrient status in Wardha District. The micronutrients tested for were copper, iron, manganese, and zinc. Of this, 1367 samples showed zinc deficiency, while none of the samples reported copper, iron, or manganese deficiency. This shows that zinc is the only micronutrient that is deficient in the district.

2.1.5. Soil Test Labs

The district has a total of 5 soil testing laboratories. Out of which one is the government soil testing lab, 1 is a cooperative and public undertaking lab, and the remaining 3 are in the private sector. The total analyzing capacity of the government sector soil testing lab is around 6500 samples. The cooperative and public undertaking lab has an annual analyzing capacity of 2500 samples. The 3 private labs put together have a total annual capacity of 4500 samples. Except for the 1 government sector lab in the district, none of the labs have Atomic Absorption Spectrometry (AAS) facility which is essential for analysis of micronutrients like zinc, manganese, iron and copper. The current annual capacity of all the existing labs, public and private put together for macro nutrient analysis in Wardha district is 13,500 samples. The maximum annual soil testing capacity for carrying out micronutrient analysis is 6500 for the district as whole.

It is recommended to draw 1 sample per 5 acre of land to arrive at the soil physical, chemical, and biological properties. Given that the total cultivable area of the district is 11,82,250 acres, the total number of samples to be drawn to arrive at soil fertility of the district is 2,36,450. Assuming that all the labs work to their full potential, it would require around 18 years to carry out soil testing for the district as a whole. But it is advised to take up soil testing on all the fields on an annual basis. Ensuring soil test to be done for the whole district annually, calls for augmenting the current annual capacity of 13500 samples in all the existing labs in the district by 18 times.

Assuming an annual capacity of 20,000 samples per year per lab, the district would require 12 soil testing labs to take up soil testing for the whole district on an annual basis.

2.1.6. Irrigation:

Agriculture in Wardha is essentially rainfed with *kharif* as the major crop growing season in the district. Though there has been an expansion of area under irrigation over the years, even by 2000-01, the gross irrigation ratio⁴¹ for the district was 4.52 with 12 per cent of the total operational holding in the district with irrigation. The area irrigated by wells as well as surface sources fluctuates a great deal, as irrigation in Wardha District is closely related to the rainfall pattern. The predominant source of irrigation in the district is still ground water with 84 per cent of the total operational holding that is irrigated depending on wells as a source of irrigation even by 2001-02. The importance of surface irrigation has increased since mid-1990s. Of the four major irrigation projects that have been planned on Wardha river and its tributaries⁴², only one, namely the one on Bor river has been completed. Till date, only one-fourth of the surface irrigation projects planned, only 3 have been completed as of July 2010. The remaining projects are expected to be completed earliest by 2011. Moreover, of the irrigation capacity created, only one-third is actually being utilised⁴³.

⁴¹ Gross irrigation ratio is gross irrigated area as a percent of gross cultivated area.

⁴² The tributaries are Wena, Pothra, Bor, Dham, Asoda, Bakli, and Kara and the major irrigation projects planned are on Wena, Wardha and Bor.

⁴³ Inference based on an analysis of the data supplied by the Wardha Irrigation Department on the status of the irrigation projects in the district.

2.1.7. Structural Changes in the Department of Agriculture & Implications for Field Level Advisory/Activity:

Before 1998, the Department of Agriculture had three major wings: Soil and water conservation, horticulture, and agricultural extension. Each one of these wings had a separate set of staff. Total sanctioned posts in the department of agriculture in the pre-1998 period, in the state of Maharashtra, was about 30,000. Of the total posts in the department of agriculture in the entire state of Maharashtra, 17,116 posts (52 percent) were exclusively in the department of soil and water conservation, 12,761 (39 percent) was in agricultural extension and the remaining 10 percent was in the horticulture department. Under this system, a substantial number of posts were created to carry on the work at the village level. Of the total sanctioned posts, the staff working at the village level, viz. agriculture supervisors and agriculture assistants, ranged in the order of 46 percent in the case of soil and water conservation and 57 percent in agricultural extension. In 1998, a single window system (SWS) was introduced in the department of agriculture, Maharashtra, whereby the three major wings of the agricultural department, namely, soil and water conservation, agricultural extension and horticulture, were merged. This meant that there was no exclusive staff available to carry out either soil and water conservation work or field level extension work (MSSRF 2010). In addition to this, no concerted efforts were being taken to fill up vacant posts in the department. As on March 2010, about 30 percent of staff positions remain vacant in the Office of the District Superintendent of Agriculture Officer, Wardha (Table 12). This structural change in the Department of Agriculture has had severe field level implication on the quantity and quality of work carried out by the department in the district.

Position	Sanctioned	Filled	Vacant
Class I (superintendent, Assistant &	5	1	4
Divisional officers)			
Class II (taluk agricultural officers)	19	13	6
Class II c Mandal agricultural officers)	34	24	10
Class III (officers at District Office)	8	4	4
Class III ⁴⁴ (Field/office staff –agricultural	422	298	124
assistants & agricultural supervisors)			
Total	488	340	148

 Table 12 Wardha District Agriculture Office – Staff Strength (as of March 2010)

Source: Data collected from Department of Agriculture, Wardha district

⁴⁴ Of the 422 class III officers, 235 are field level agricultural assistants and agricultural supervisors

2.1.7.a.Implication for Soil & Water Conservation Activity: A critical examination of the soil and water conservation activities in two time periods 1992-99 (pre-single window system) and 1999-2007 (post-single window system), marks the year 1998 as a watershed year for soil and water conservation activities in the district, with the range and magnitude of activities coming down drastically post-1998.

Considering a common set of activities⁴⁵ during the time periods, pre-SWS, and post-SWS, it was observed that the index of activity has drastically come down post-SWS for all the activities except for farm ponds that received particular attention in the special packages announced for Wardha (Table 13).

The reduced availability of manpower on the one hand combined with the restructuring of the agricultural department, which had implications for availability of staff exclusively for soil- and water-conservation activities, resulted in an absolute decline in the quantum of soil- and water-conservation activities in Wardha district.

⁴⁵ Graded bund, continuous contour trenching, loose boulder structure, earthen structure, cement nala bunding, clay nala bunding, underground bund, live filter strip, farm ponds, live check dam, and brush wood dam.

District	Period	Graded	ССТ	Loose	Earthen	Cement	Clay	Under	Live	Farm	Live	Brush
		bund		boulder	structure	nala	nala	ground	filter		check	wood
				structure		bunding	bund	bund	strip	ponds	dam	dam
		На	На	No.	No.	No.	No.	No.	На	No.	No.	No.
Watershed	1992–	24,165.3	654	14,529	1,004	394	465	641	4,238.8	226	749	9,934
activities	1999	0							3			
completed												
	1999–	22,523.7	54	3,383	383	552	155	19	1691.1	1,715	338	68
	2007	0							7			
Average	1992–	3,452.19	93.4	2,075.57	143.43	56.29	66.43	91.57	605.55	32.29	107	1,419.1
activity/	1999		3									4
year												
	1999–	2,815.46	6.75	422.88	47.88	69	19.38	2.38	211.40	214.38	42.25	8.5
	2007											
Index of	1992–	100	100	100	100	100	100	100	100	100	100	100
Activity	1999											
	1999–	82	7	20	33	123	29	3	35	664	39	1
	2007											

Table 13. Analysis of Watershed Activities, Wardha District

Note: CCT refers to Contour continuous trench; Index of Activity for 1999–2007 is worked out keeping the activity in the base year 1992–99 as 100. Source: March 2010

2.1.7b. Implication for Agricultural Extension:

The agricultural extension system plays a crucial role in facilitating the various decisions farmers make during a crop cycle. The field level interactions in two villages⁴⁶ in Wardha district, as part of an earlier study on the district as well as the current study, have brought out a large number of instances which point to the near absence of public extension system in the district.

The reason given for the complete absence of extension activity is again the structural change in the Department post 1998 and the associated lack of manpower, overburdening of manpower, and changes in staff compensations. Doing away with the concept of contact farmer, who acted as a catalyst for change in the villages during the training & visit system of the green revolution period is also cited as a major constraint in the spread of knowledge and technology by the Department.

2.1.8. Agricultural Extension Reforms:

Wardha is one of the Agricultural Technology Management Agency (ATMA) districts⁴⁷. And it's also one of the districts chosen to pilot "*The Extension Reforms*" introduced by the GoI during the X Plan period under the broad preview of the Policy Framework for Agriculture Extension (PFAE). This scheme came into effect in the year 2005. Under this scheme, ATMA was mandated to develop a demand driven, situation specific, multi-actor oriented Strategic Research and Extension Plan (SREP) to accelerate agricultural development in the project districts. The SREP was to serve as the basic document, which not only guided the development activities that need to be carried out, but also spelled out the manner in which it was to be done, and also identified the officials/departments mandated to implement the different development activities. The effectiveness of SREP as a methodology in establishing effective Research –Extension-Farmer linkages is recognized and acknowledged across the

⁴⁶ The villages are Lonsawali in Wardha Taluk and Kosurla in Hinghanghat Taluk

⁴⁷ATMA is a registered society of key stake holders responsible for technology dissemination and agricultural activities for sustainable agricultural development at the district level. It is a focal point for integrating Research and Extension activities and decentralising day to day management of the public Agricultural Technology System (ATS). The ATMA at district level would be highly responsible for all the technology dissemination activities at the district level. It would have linkage with all the line departments, research organizations, non-governmental organizations and agencies associated with agricultural development in the district.

ATMA districts in the country⁴⁸. The ATMA agency in Wardha district is yet to prepare the SREP which is very essential for carrying forward the extension reforms programme in the district.

⁴⁸ The assessment study conducted by the National Academy of Agricultural Research Management (NAARM), Hyderabad in 2004, highlighted the significance and effectiveness of the SREP methodology for establishing Research-Extension-Farmer linkages. The findings inferred that:

[•] A majority of the stakeholders perceived SREP as a useful methodology for addressing research and extension issues based on farmers' needs.

[•] SREP should be commissioned in all the targeted districts simultaneously

[•] The SREP guidelines should be revised to comprehensively cover planning, operationalisation, implementation, monitoring and evaluation of SREP initiatives.

2.2. Action Plan for Sustainable Agricultural Development in Wardha District:

The action plan details major issues in the sphere of agriculture and suggests remedial measures. Further identification of agencies capable of implementing the remedial measures is also attempted. The schemes listed and the agencies identified are on the basis of extensive exploration of the respective department websites. To the extent possible, physical quantification of the individual remedial measures have been attempted.

Item	Issue	Remedial Measures	Action Plan	Agency Concerned
Land use,	• Decline in net sown area	• The current cropping system in the district is in	Diversification of	• State Agricultural
cropping	• Increase in fallow land	favour of cash crops. The very high instability in	cropping pattern with	University and Regional
pattern	acreage	yield of these crops adds to the vulnerability of the	a balanced and	Research Stations (to design
and crop	• Reduction in the area	cash crop based cropping system. A more diversified	sustainable	cropping systems suitable to
production	under food grains in the	cropping pattern with equal emphasis given on both	combination of food	the agro-climate of the
	cropping system	food and non-food crops would make the cropping	and non-food crops	region)
	• Increase of cash crop	system more balanced and sustainable ⁴⁹ .	• Source into the	• Department of Agriculture
	acreage in cropping	• The district should tap into the provisions available	different central and	(for extension activity,
	system	in National Food Security Mission (NFSM) and the	state government	training and demonstration
	• High level of instability in	Accelerated pulses programme to promote pulses	schemes available for	on different cropping
	yield of the major crops in	under these schemes, and into the National	cropping pattern	systems.
	the district (cotton,	Horticulture Mission to promote fruits and flowers.	diversification	
	soybean, jowar, redgram)			

⁴⁹ Some of the alternative cropping systems developed by CRIDA for Wardha district like Cotton (AKH 84635) with greengram (Kopergaon) as an intercrop in 1:1 row ratio; and sorghum (CSH-13) with intercrop of greengram/ blackgram in 1:1 row ratio need to be promoted. In deep soils sorghum (CSH-9/CSH-13) intercropped with pigeonpea (C-11) in 6:2 row ratio is recommended. In case of delayed monsoons, it is advisable to reduce area under cotton and replace it with sorghum (CRIDA 2002)

Item	Issue	Remedial Measures	Action Plan	Agency Concerned
Land use,	• Low coverage of	• The district is identified as a pulse district under NFSM in	• Promote pulse	• KVK (extension activity,
cropping pattern	the different	Maharashtra. The district administration should use this	seed villages	and training and
and crop	schemes	opportunity to promote large number of seed villages for	• Expansion of	demonstration on different
production	available for	pulses in Wardha district. This will improve the seed	the area under	cropping systems)
	crop	replacement rate of pulses ⁵¹ and bring more and more area	NHM in the	• NGO working in the field
	diversification in	under good quality pulses seeds and thus help improve	district	of sustainable agriculture
	the district ⁵⁰	their productivity		(extension activity- training
		• Expansion of the NHM coverage in the district. NHM crop		and demonstration on
		cluster in the district consists of mango, mandarin orange,		suitable cropping systems)
		kagzi lime, custard apple, guava, spices, medicinal and		• DoA to ensure effective
		aromatic plants, and flowers. Dry land horticultural crops		implementation of the
		could also be promoted on fallow lands in the district		schemes like NFSM, NHM,
		under NHM in the district		accelerated pulses
				programme, and other crop
				specific programmes)

⁵⁰ Up till June 2010, 1228.75 ha of fruits and 120.10 ha of flowers have been promoted under NHM in the District. This accounts for less than 1 per cent of the total cultivable area of the district. The district has a total fallow land of 85,033 hectares, which is about 13.5 per cent of the total geographical area of the district. This indicates the further scope in expanding the area under NHM in the district. ⁵¹ The current seed replacement rate of red gram the major pulse in the district is 45 per cent.

Item		Issue		Remedial Measures		Action Plan		Agency Concerned
Rainfall	•	Declining trend in the total	•	Soil and water conservation measures with a	•	Ridge to valley	•	Department of
& soil		annual rainfall		ridge to valley approach		approach in		Agriculture, DRDA,
properties	•	Decline in the number of rainy	•	Promotion of conservation tillage- any tillage		watersheds to be		NABARD & NGOs
		days		system in which at least 30% of the soil		strictly adhered		(involved in
	•	Poor texture of the soil,		surface is covered by residue after planting;		to		implementation of
	•	Low water holding capacity		strip cropping- the planting of alternating	•	Participatory		watersheds (to create
		and the resultant heavy surface		strips of crops of different heights or seasonal		planning of		awareness, to take up
		water run-off		maturities across a landscape; and contour		watershed		participatory planning of
	•	Associated problems of soil		farming- the production of crops across		treatments		watershed treatments to
		erosion		instead of with slopes to reduce the erosion	•	Adoption of steps		ensure community
	•	Low cation exchange capacity		forces of wind and water.		to reduce erosion		willingness to adopt the
		- which has an impact on the	•	Addition of biomass (farm yard manure, other		losses		suggested conservation
		ability of the soil to respond to		compost, green manure etc) to the soil to	•	Biomass addition		treatments and to ensure
		fertiliser application		improve the organic matter content which will		to improve soil		their participation;
	•	Soil alkalinity – about 40.22		help in:		texture and		promote green manure
		per cent of the total		• improving the texture of the soil				crops as part of the
		geographical area is affected		\circ improve cation exchange capacity and				watersheds)
		by medium to high alkalinity		hence the nutrient response of the soil				
		problems		• Improve water holding capacity of the soil				

Item	Issue	Remedial Measures	Action Plan	Agency Concerned
Rainfall and s propertie	soil es	 It is recommended to apply on an average 7.5 tons of farm yard manure (FYM)/hectare per annum, the total requirement of FYM for the total cultivable area of 472900 hectares would be roughly 35.47 lakh tons/annum Promote application of bio fertilizers for augmenting the availability of the nutrients in the soil Apply bio fertilisers at the rate of 1 kg/acre/crop season. Even assuming that the total cultivable area of the district (4.72 lakh hectares) would be brought under cultivation both the seasons-(<i>kharif & rabi</i>), the total amount of bio fertilisers required would be 11.82 lakh kgs, that is 1182 tons of bio fertiliser per annum approximately Promote bio fertiliser units as an enterprise among the SHGS promoted by the different agencies in the district 	 Bio fertiliser application Promote bio fertiliser units as group enterprises 	 Department of Agriculture, KVK, and NGOs working in the field of sustainable agriculture (to create awareness about and to train on the different soil erosion control techniques) Department of Agriculture, KVK, and NGOs working in the field of sustainable agriculture (to create awareness about the need of adding biomass and give training and demonstration on the different methods of composting) Department of Animal Husbandry (Schemes of supply of indigenous breed milch animals in subsidy, and scheme of feed subsidy to milch animals Regional Biofertiliser Development Centre, Nagpur – (to supply strains of microbes for bio fertiliser production, and to help in quality control of biofertilisers) District Rural Development Agency (DRDA) (to promote bio-fertiliser units under SGSY scheme)

Item	Issue Remedial Measures Acti		Action Plan	Agencies Concerned
Soil & water	• The absence of best quality class-	• Concerted efforts should be taken	• Land development	• Agencies involved in
conservation	I land in the district	towards land improvement so as to	programmes like	watershed implementation in
efforts and land	• The need for conservation	make them amenable for intensive	terracing, manuring,	the district (Dept of Agrl,
improvement	measures to maintain the other	cultivation. On class-III lands, land	mulching, and biomass	DRDA, KVK, NABARD,
	land classes.	development programmes like	recycling to be carried	NGOs)
	• The need for ameliorative	terracing, manuring, mulching, and	out on class III lands	• Zilla parishad to take up land
	measures to address soil alkalinity	biomass recycling to increase the		improvement and soil and
	on 2.54 lakh hectares of land.	organic matter content of the soil		water conservation treatments
	• The reduction in the total	should be taken up. This will help	• Land development	under NREGS
	quantum of the soil and water	enhance the water holding capacity of	programme to be taken	• Department of agriculture,
	conservation works in the district	the soils and also improve the nutrient	up under MREGS	KVK, NGOS - (training and
	• The lack of soil and water	supplying capacity of the soil by		demonstration on alkalinity
	conservation measures in the	improving the soil cation exchange		treatments)
	upper and middle reaches of the	capacity		• Department of agriculture to
	watershed	• Scope of taking up land development		supply gypsum at subsidised
	• Lack of enough skilled staff to	programmes under the MREGS ⁵²		rate to regions facing
	carry out soil and water	scheme wherever feasible should be		problems of alkalinity within
	conservation efforts in the district	worked out		the district

⁵² Mahatma Gandhi Rural Employment Guarantee Scheme

Item	Issue	Remedial Measures.	Action Plan	Agency Concerned
Soil & water	•	• Land rehabilitation by promoting native vegetation should also be done.	• Promotion of avenue	• Zilla Parishad Wardha
conservation		This will help reduce soil erosion. Planting of avenue trees/shade trees	plantation	district which is
efforts and land		like acacia, pongamia, gulmohar etc should be undertaken under the	• Promotion of dry land	implementing the
improvement		MREG scheme. Dryland horticultural plants like mango, mandarin	horticulture	MREGS in the district
		orange, anola, custard apple etc should be promoted under the National		to take up avenue
		Horticultural Mission. Currently less than 1 per cent of the total		plantation as an activity
		cultivable area has been covered under fruit crops under the National	• To reclaim alkaline	under MREGS
		bringing more area under fruit crops in the District	affected soils:	• Department of
			o Leaching	Agriculture to promote
		• In areas where soil is calcareous and have alkalinity problems (about	• Gypsum application	dry land horticulture
		40.2 percent of the total geographical area of the district), land	as ameliorative to	under NHM
		reclamation efforts like improving drainage, leaching with with excess	be taken up	• Department of
		water and salt below root zone, and application of gypsum should be		Agriculture to supply
		taken up ⁵⁵ .		gypsum at subsidy rate

⁵³ The alkaline affected soils of Wardha have pH in the range of 8.3 to 8.6. The recommended dosage of gypsum for soils for pH range 8 to 9 is 1 ton/acre (TNAU 1999). This need to be applied in one single dose before sowing. The total alkaline affected area of the district is about 627437 acres (NBSSLIUP 2005). The total gypsum requirement for the alkaline affected area of the district would be 627.44 tons of gypsum/annum

Item	Issue	Remedial Measures	Action Plan	Agency Concerned
Soil	• Low range of organic carbon	• Application of biomass and promotion of use	• Biomass	• Department of Animal
health &	content in the soils of Wardha and	of bio fertilizers as discussed in the section on	application	Husbandry (Schemes of
soil test	the consequent low level of	soil property improvement	• Bio-fertiliser	supply of indigenous
labs	available nitrogen levels in the	To tackle specific nutrient problems the following	application	breed milch animals in
	district	specific measures to be followed:	• Micronutrient	subsidy, and scheme of
	• Low level of available	• Improvement in the available nitrogen status	application	feed subsidy to milch
	phosphorous	could be effected through improvement of the	• Following	animals)
	• Low level of zinc among the	organic carbon status of the soil through	integrated nutrient	• Regional Biofertiliser
	micronutrients	application of farm yard manure, compost and	method	Development Centre,
	• Low capacity of the existing soil	other biomass addition. The other ways of		Nagpur – (to supply
	test labs to carry out full scale soil	improving the nitrogen status of the soil is		strains of microbes for
	tests (macro+micro nutrient and	through application of nitrogen fixing		bio fertiliser
	microbial load) in the district	biofertilsers and introducing more legumes in		production, and to help
	• Lack of atomic absorption	the cropping system.		in quality control of
	spectrometry facility, a	• Application of phosphorous solublizing		bio-fertilisers)
	requirement to carry out	bacteria and application of lime will help		• District Rural
	micronutrient analysis of the soil	improve the available phosphorous status of		Development Agency
	in all the soil testing labs of the	the soils of the district.		(DRDA) (to promote
	district.	• Application of zinc sulphate and supply of the		bio-fertiliser units
	• The less than potential utilisation	same through subsidized rate through the		under Swarna Jayanthi
	of the facility by the existing soil	Department of agriculture is important to take		Grameen Swarozgar
	testing labs in the district	care of the zinc deficiency in the soils of		Yojana)
		Wardha district		

Item	Issues	Remedial Measures		Action Plan		Agency Concerned
Soil		• Provision of soil health card for soil health	•	Provide soil health	•	Department of Agriculture (awareness
health &		management:		card		about soil test, soil health card)
soil test		• Soil variability within the village and across the villages	•	Awareness creation	•	
labs		is very high in Wardha district. Knowledge on the health		on the need for soil	•	NGOs working in the field of sustainable
		of the soil in individual fields is extremely crucial for		test		agriculture (awareness about soil test, soil
		farmers to apply appropriate quantity of organic and	•	Provision of soil		health card)
		chemical fertilisers. In this context, it is very important		test sample	•	KVKs (awareness about soil test, soil
		that every farmer is provided a soil health card specific		collection at the		health card)
		to his land in order to facilitate balanced nutrient		Taluk level	•	Soil test labs - public/co-operative/private
		application to the soil				(soil tests & soil health cards)
		To sensitise and facilitate soil testing and to improve the soil			•	Department of Agriculture (make
		test infrastructure in the district				provision for collecting soil test samples
		• Create more awareness about the need for conducting				at the taluk agricultural office)
		soil tests among farmers				
		• Create a provision to collect the farmers' soil samples at				
		least at the Taluk level and then transport it to the soil				
		testing lab at Wardha. The samples could be collected at				
		the Taluk Agricultural Office				

Item	Issue		Remedial Measures	Action Plan		Agency Concerned	
Soil		• Al	llot at least one mobile soil testing lab to the district	•	Augment the annual capacity of	•	Government of
health &		• In	crease the capacity of the government sector labs and		the district soil test lab		Maharashtra
soil test		up	ograde the existing soil testing laboratories. It is	•	Increase the number of soil		
labs		est	timated that the district would require 12 soil testing		testing labs to 12 in the district		
		lał	bs, with a capacity of 20,000 samples annually to	•	Enable all labs to have atomic		
		en	hable soil testing for the entire district. There are 8		absorption spectrophotometer		
		tal	luks in the district and each taluk should necessarily		for micronutrient analysis		
		ha	ave at least one soil testing labs while bigger taluk	•	Equip labs to take up soil		
		sh	hould have more than one lab such that the district as		microbial load analysis		
		a v	whole has 12 labs	•	Regulate soil test charges of		
		• Er	ncourage the cooperative labs and private labs to		private labs		
		wo	ork to their full potential. Currently, the private and				
		co	opperative labs utilise less than half of their potential				
		ca	upacity.				
		• Es	stablish atomic absorption spectrophotometer facility				
		in	the cooperative labs for micronutrient analysis.				
		• Re	egulate the amount to be paid for soil sample analysis				
		by	the private labs				

Item	Issue	Issue Remedial Measures		Agency Concerned
Irrigation	• Low level of	• Ongoing surface irrigation projects should be completed on a	• Completion of	• The different central
	irrigation. The	mission mode. Should explore the scope of using the Rural	ongoing	and state government
	net irrigated area	Infrastructure Development fund and NABARD funds, in addition	surface	major, medium, and
	as a percentage	to the allocation given to the district for Irrigation Department to	irrigation	minor irrigation
	of net sown area	speed up the completing of the ongoing projects.	projects	departments in the
	is only 7.05 as of	• The fact that 85 % of the operational holdings that are irrigated		district of Wardha.
	2001-02	still depend on ground water as a source of irrigation highlights	• Have ground	
	• Incompletion of	the importance of ground water to the agricultural economy of the	water recharge	• Agencies responsible
	the planned	Wardha district. Efforts should be taken to augment and conserve	structures like	for watershed
	irrigation	the ground water resources in the district. Sustainable ground	check dams	implementation in the
	projects in the	water planning should be made an integral part of any watershed	and farm ponds	district to take up
	district	programme.	as part of	ground water recharge
	• Overdependence	• The watershed programmes of the district should plan for more	watershed	structures
	on ground water	ground water recharge through dug-well recharge, tank-recharge	programmes	
	as a source of	and strengthening of water harvesting cum recharge structures like		
	irrigation	check dams and farm ponds in the watershed programmes. The		
		location of ground water recharge structures like check dams		
		should be planned by taking into account the ground water		
		catchment contours and variations in hydrogeology of the district.		
		This will help improve the effectiveness of these recharge		
		structures, thus ensuring sustainability of the ground water		
		resources		

Item	Issue		Remedial Measure	Action Plan	Agency Concerned
Structural	• Doing away with the system of	•	The agricultural extension system in the	Allocation of	Government of Maharashtra
Changes in the	allocating dedicated skilled field		district has to be strengthened. An	separate staff	(to make policy level
Department of	staff in the different sections		extension system that is much more	at field level	changes to revamp and
Agriculture &	namely, soil and water		dynamic and mobile is urgently needed.	for agricultural	restructure the Department
Implications for	conservation and extension		Allocation of separate staff at the field	extension and	of Agriculture)
Field Level	• Large number of vacant posts in		level for general agricultural extension	soil & water	• To restructure the
Advisory/Activity:	the district due to stoppage of fresh		activities and soil and water conservation	conservation	Department of
	recruitments in the department		activities should be reintroduced ⁵⁴ .		Agriculture in lieu with
	• The resultant reduction in quantity				the pre-single window
	and quality of work carried out at	•	The extension machinery should play a		system,
	the field level by the Department		more proactive role in tapping	• Have a	• To increase the total
	of Agriculture		technologies on shelf for increasing	more	number of sanctioned
	• Lack of manpower to carry out		productivity, profitability, and	effective	post in the Department
	extension work		sustainability of the farming system of	extension-	of Agriculture in the
	• The overburdening of the field		Wardha district. Given that the State	research	districts of Maharashtra
	level staff due to shift to single		Agricultural University does not have a	linkage	• To allot exclusive staff
	window system		mandate to be directly engaged in farmer		for extension and soil
	• Doing away with the concept of		extension activities, it is necessary that		and water conservation
	contact farmer		concerted efforts are taken to transfer the		works
	• The resultant poor level of		relevant knowledge developed in these		• To increase the
	extension work in terms of quantity		institutions to farmers. This entails a		permanent travel
	and quality		stronger and more effective research-		allowance
			extension linkage.		

⁵⁴ According to Census 2001, the total number of inhabited villages in the district is 1004. Assuming an average of 250 farm families per village, the total number of farm families in the district works out to be 2, 51,000. Assuming a ratio of 1000 farm families per agricultural assistant, the district would require about 251 field level agricultural assistants to carry out agricultural extension work effectively. An equal number of staff (251) for exclusive field level soil and water conservation works should also be recruited. This takes the total field level staff requirement for extension and soil and water conservation to be 502. This requires the current sanctioned field level agricultural assistants/supervisors strength of 235 (as of March 2010) to be doubled.

Item	Issue	Remedial Measures	Action Plan			Agency Concerned
Extension	Absence of the Strategic	ATMA to play a more proactive role in the extension	Prepare	Strate	egic	ATMA to evolve SREP
reforms	Research and Extension	activity in the district.	Research		&	for the district
	Plan (SREP), which is	ATMA to prepare SREP. The development and use of SREP	Extension]	Plan	
	very essential for	would help in the following aspects:	(SREP)	for	the	
	establishing strong and effective research- extension-farmer linkage in the district and also for effective panning of extension activities in the district.	 Get an overview of the prevailing scenario in the district Explore and understand the problems and opportunities in different farming systems, preference and priorities of the farming community Facilitate long-term visioning and strategic planning for agricultural development in the district in a concerted manner Facilitate involvement of all actors at different levels in the development process and, in the long run, share the load on the public extension system Facilitate integration of and redesigning the on-going developmental programmes for the benefit of the farmers Development of annual action plans for each block in respect of the prevailing Agro-Ecological Situation Develop farmer centered market oriented extension research management system 	district			

Section 3

Conclusion

The factors that act as an impediment to agricultural growth in Wardha district are manifold. The rainfed nature of its agriculture, the erractic nature of monsoon, the poor quality of its soils, the lack of concerted efforts in soil and water conservation, and the poor level and quality of agricultural extension practiced in the district are to mention a few of them. A detailed study of one of the *panchayat's* of the district was also attempted. The study on the *panchayat* reveals the poor soil quality, ineffective agricultural extension system, and lack of irrigation as some of the factors inhibiting agricultural growth in the *panchayat*. The current study details the issues underlying the nature of each of these factors and suggests measures to overcome these issues Attempt has been made to quantify the suggestions in terms of an action plan. Action plans have been drawn at two different levels- at the district level and at the panchayat level. The action plan not only gives the remedial measures but also identifies the agency which can take up the measures suggested, and lists out some of the relevant schemes under which this can be taken up. For this purpose, the action plan sources into the current and ongoing schemes for agricultural and rural development in the district.

The Action plan can be used to seek funding under the Rashtriya Krishi Vikas Yojana (RKVY), through the Government of Maharashtra. RKVY is an additional Central Assistance scheme that provides incentives to states to increase public investment in agriculture and allied sectors. The State government can also source into funds allotted for rural development by Ministry of Rural Development, the Mahatma Gandhi Rural Employment Guarantee Schemes, Bharath Nirman Programme, & other related and relevant schemes of the Department of Agriculture, and also the *Panchayat* Raj Funds for implementing the measures suggested for achieving sustainable agricultural progress and agrarian prosperity. The action plan stresses on greater convergence of the different schemes implemented by different departments and also on intensification of the outreach of the current programmes/schemes for overall agricultural development in the district.

References

Census 2001. *Primary Census Abstract*. District Census Handbook. The Maharashtra Census Directorate.

CRIDA 2002. Indigeneous Technical Knowledge on Soil and Water Conservation in Semi-Arid India. National Agricultural Technology Project. Agro-ecosystem Directorate. Central Research Institute for Dryland Agriculture. Santhosh Nagar, Hyderabad.

Government of Maharashtra 2005. Seventeenth All India Livestock, Poultry, Fisheries and Farm Equipments Census – 2003. Commissionerate of Animal Husbandry. Maharashtra State, Pune.

ICAR 2006. *Handbook of Agriculture*. Indian Council of Agricultural Research, New Delhi.

Kolay A.K. 1993, Basic Concepts of Soil Science, Wiley Eastern Limited, New Delhi.

MSSRF 2010. Designing Rural Technology Delivery Systems for Mitigating Agricultural Distress – A Study of Wardha District. M..S. Swaminathan Research Foundation, Chennai.

NBSSLUP 2005. Sharma, J.P; K.S.Gajbhiye; C.Mandal et al. Soil *Resource Atlas. Wardha District*. National Bureau of Soil Survey and Land Use Planning, Nagpur

TNAU 1999. Muthuvel .P. and C. Udayasoorian. *Soil, Plant, Water, and Agrochemical Analysis.* Tamil Nadu Agricultural University, Coimbatore.

Annexures

Annexure 1: List of People Interacted With District Collector Office:

Mr. Rajesh Khawali – Deputy Collector Mr. Vinay S. Moon – District Revenue Officer

Department of Agriculture, Wardha District

Mr. Arjun Sopan Tandale - District Superintendent of Agriculture Dr. Amrudhkar - District Project Coordinator Mr. Prakash Kadu – Tracer

District Soil Testing Lab, Wardha District

Mr. Phating - District Soil Survey and Soil Testing Officer Mr. S.P.Tumsare – Krishi Pariveshak Mr. Alwadkar – Supervisor

Zilla Parishad Minor Irrigation Division, Wardha District

Mr. Kadse - Executive Engineer Mr. R.B. Bangle - Sectional Engineer - Wardha Subdivision Mr. A.R. Katale - Sectional Engineer – Wardha (?) Sub Division

PWD Minor Irrigation Department

Mr. Vijay Bopate - Sectional Engineer

District Rural Development Agency, Wardha District

Mr. Manohar – Project Director, DRDA Ms. Sangeetha Bhorkar -Mr. Charde – Technical Assistant

Forest Department

Mr. L.V.Swami – Assistant Conservator of Forest Mr. Sham Dhamande – PA to District Conservator of Forests

District Statistical Office

District Statistical Officer

District Land Survey and Land Records Department, Wardha District Mr. P.S. Bujade - Officer

Wardha Taluk Office , Wardha District Mr. H.M. Lokhande – Tehsildar

Wardha Taluk Agricultural Office

Mr. Bhaskar Mughe – Agricultural Assitant, Lonsawali *Panchayat* Mr. Sunil Javdekar – Agricultural Assistant

Vividha Office

Mr. Vaibhave Chople - Technical Assistant

Microplex Private Limited – Bio-fertiliser Company

Mr. Sunil - Microbiologist Ms. Meenakshi – Microbiologist Ms. Priya Gadse – Microbiologist Ms. Deepali – Microbiologist Ms. Sarika – Microbiologist Mr. Surendra Raut – Sales Manager

NGO's

WOTR Mr. Ranjith Yadav – Manager

Mr. Raju - Jan Seva Grameen Vikas Prathistan

Project Director - NHWDP Lonsawali Cluster

Lonsawali Village Panchayat

Mr. Gavande – Village Administrative Officer (Gram Sevak) Mr.Rajendra Bagar – Village Revenue Officer (Patwari) Mrs.Kalpana Nidhin Gadge – *Panchayat* President (Sarpanch) Pradhnyavanth Wagmare - Village Watershed Committee Membern cum Supervisor

PRA and Focus Group Discussion with farmers in Lonsawali Panchayat

Venue: Krishna Mandir, Lonsawali **Participating Members**: Mr. Diwakar Jadav Mr. Purushothamrao Aurgude Mr. Damodar Dandare Mr. Shenkar Goha Mr. Shandaramji Bhalerao Mr. Diwakar Attram Mr. Vittalrao Jadhav Mr. Ramraoji Aurgude Mr. Murlidhar Gode Mr. Sukhudev Kodape Mr. Ganbaji Imarathi Mr. Shridhar Dhandare Mr. Pradhyanath Wagmare Mr. Vijay Wagmare Ms. Vanitha Gude Ms. Shalini Khakar Ms. Smitha Patil Mr. Anthakal Omkar

Annexure 2: Budget - Bio-fertiliser Unit

Budget for the Biofertilizer unit (With the capacity to produce 5 t per annum of each *Azosprillum,, Phosphobactor and Rhizobium*)

Details	Cost (Rs)
Pressure Cooker	5,000
Poly bag sealer	500
Weighing balance	3,500
Gas connection	5000
Autoclave	30,000
Low cost laminar flow and racks	35,000
Bottles (250 ml) and plastic wares	1500
Beakers and glass wares	8000
1. Petri plates	
2. Beakers (250ml, 500ml- each two, plastic)	
3. Measuring cylinder (one litre)	
4. Test tubes, stand and Sprit lamp	
5. Pipette (1ml, 5 ml, 10ml – one each)	
Chemicals	7000
Registers	500
Transport	1500
Vermicompost	3000
Operational expenses including labour and building	50,000
cost for an year	
Total Cost	1,50,500

Annexure 3: Budget – Village Level Mini-Agromet Observatory

I. Instruments costs

Sl.	Instruments	No.	Amount
No.			
1.	Stevenson screen	1	15750
2.	Anemometer Cup counter	1	6450
3.	Non recording rain gauge with Borosil measuring cylinder	1	3750
4.	Dry bulb thermometer	2	2650
5.	Wet bulb thermometer	2	2650
6.	Maximum thermometer	2	2900
7.	Minimum thermometer	2	2900
8.	Grass minimum thermometer	1	695
9.	Transport cost		5000
	Total cost of the instruments		42745

II. Installation material costs

Sl.	Materials	No.	Amount
No.			
1.	Bricks	1200 nos	3600
2.	Cement	20 bags	5000
3.	Gravel	15 bags	1000
4.	Sand	15 bags	1000
5.	Fencing post 6 feet ht		500
6.	10.5 feet pole of GI pipe of two inches (Hollow) with reducer coupling		1000
7.	Running meter length of 22.5 with one-meter width of wire-mesh (single eye)		4500
8.	26 nos. of poles (1 ¹ / ₂ inches GI Pipe) with 6 feet height		8000
9.	Board		1400
	Total Installation material costs		26000

III. Installation – consultancy charges

Sl.	Consultancy	No.	Amount
No.			
1.	IMD certified expert for installation	2 days	5000
2.	Training on management	2 day	5000
	Total consultancy charges		10000

Total cost = 78,745

M S Swaminathan Research Foundation Centre for Research on Sustainable Agricultural and Rural Development 3rd Cross Road, Taramani Institutional Area Chennai - 600 113

Office of the Principal Scientific Adviser to the Government of India Vigyan Bhawan Annexe Maulana Azad Road New Delhi -110 011